
Rubric for concept design

area skill skill description criterion name criterion description evidence example failing

Concept design Modularize
functionality

Express the
functionality of a
software
application in a
modular way

Independence Concepts are fully
independent of each
other, and can
therefore be
understood and used
independently of one
another.

Concept description limits any references
to context of use to notes.

Concept purpose mentions the way in which the concept is intended to be used (eg, a payment
concept whose purpose says “enables payment for magazine subscription”).

Concept does not refer to another concept
by name.

Concept mentions working in concert with another (eg, session concept says “works with
authentication concept to provide authenticated sessions”).

Concept does not rely on any properties of
other concepts.

Concept action “calls” an action of another concept or queries the state of another concept.

All external datatypes are either generic
parameters or built-in types (such as
String).

Concept treats arguments as objects that have been constructed elsewhere (eg, takes in a user
object that is assumed to have a name field).

Completeness Each concept
provides a complete
and coherent unit of
functionality that
delivers the value
described in the
purpose without the
help of other
concepts.

Concept functionality covers entire
lifecycle of the purpose.

Concept doesn’t include actions for set up (eg, defining available slots for reservations), or for
closing down (eg, no deletion for an account).

Concept embodies real functionality that
fulfills a compelling purpose.

Concept is a data structure with CRUD actions when purpose calls for richer behavior (eg,
concept holds contact info for a user but doesn’t include any notification behaviors).

Concept state is rich enough to support all
the concept actions.

Concept state is expressed as the instance variables of a single object (eg, password auth
concept that declares state as username and password, failing to support lookup by username
needed to check password).

Concept actions are sufficient to provide
essential functionality to users.

No action to allow users to undo the effects of prior actions (eg, to cancel a reservation).

Separation of
concerns

Concept does not
conflate two
concerns that could
be broken into
separate concepts
that could be reused
independently of one
another.

All components of the state work together
for a single purpose.

The state admits a factoring into two or more independent parts (eg, a user concept mixes
preferences and profile fields).

No state component can be dropped
without compromising essential
functionality.

The concept gratuitously includes state that is not needed to support actions (eg, a password
authentication concept that stores, in addition to username and password, the date on which the
user first joined).

The concept does not include state
components that could be easily expanded
into much richer, self-contained structures.

The concept contains references to external objects and stores properties of them that are not
needed for this concept (eg, references to users along with their names, which would better be
stored in a separate profile concept).

Concept represents at most one reusable
and ideally familiar units of functionality.

The concept does not include a subpart that could easily stand by itself, and may even be
familiar in its own right (eg, user concept includes karma points).

The concept is balanced in the attention to
behavioral detail.

The concept does not include a fragment of functionality that would in practice grow into a full
and complex concept of its own (eg, a restaurant reservation concept including some details of
table sizes, which would in practice belong to a concept that managed table layouts).

Define behavior Define the
detailed
behavior of an
application using
states and
actions

Purpose Define the purpose
of a concept that
motivates its
inclusion or invention

Purpose is a succinct and compelling
description of a need or problem that the
concept solves.

The purported purpose is instead a partial description of behavior (eg, purpose of Authentication
concept is defined as being able to register and login, rather than as a means of identifying
users).

Purpose expresses a need and not a means
by which the need is fulfilled.

Purposes hints at mechanism of concept (eg, purpose for a Reservation concept saying that it
enables users to obtain commitments of allocation of a resource in advance).

Purpose is focused on the concept at hand
and not a larger need.

Purpose cannot be fulfilled by the concept itself, but would require other concepts too (eg,
purpose of Friend concept is to allow users to connect to and share posts with each other, which
cannot be fulfilled without a Post concept in addition).

Purpose is expressed in an intelligible way
that is easy to understand.

Purpose uses technical terms or the name of the concept itself without explanation (eg, saying
that the purpose of a Following concept is to allow users to follow each other).

area

1

Purpose captures an end-to-end need that
brings real value and does not focus on an
aspect of behavior that brings no value in
itself.

Purpose specifies ability to enter data without indicating why the data is useful (eg, saying that
the purpose of a school Attendance concept is to record whether students are present or absent,
without saying how the concept makes use of this information, say for generating end-of-term
reports).

Purpose is expressed in an application-
independent way that would make sense
for any context of use.

Purpose includes application-specific details that are not relevant to the design of the concept
(eg, saying that the purpose of an Authentication concept in a concert ticketing app is to ensure
that tickets are used by the people who bought them, which goes beyond authentication and
includes irrelevant details of who is authenticated and why).

Operational
principle

Summarize
archetypal concept
behavior as a
scenario

OP is a scenario that involves a sequence
of steps.

OP is instead a restatement or elaboration of the purpose (eg, an OP for Authentication that says
that users are identified so that decisions can be made about what actions they may perform,
rather than enumerating the key steps of registration, login, etc).

OP covers the full lifecycle of the concept. OP covers only a user interaction that requires a prior setup (eg, an OP for Authentication that
starts with login and neglects registration).

OP includes actions by all stakeholders
that modify the state.

OP neglects the setting up the conditions by administrators or company employees that make
consumer interactions possible (eg, an OP for a ProductCatalog concept that includes a customer
searching the catalog but does not include the actions that create the catalog).

OP only includes actions of the concept at
hand, and not the actions of other
concepts.

OP describes a user journey that involves multiple concepts (eg, an OP that says that a user
registers for an account, logs in and then posts a message, mixing Authentication and Post).

State Design the abstract
state of a concept,
aka the data model

State clearly defines distinct components. Not clear exactly what is being stored in the state (eg, state for a UserProfile concept mentions
only “information about users”, rather than saying that it stores a display name and bio for each
user, for example).

State covers all the objects needed to
support the actions.

State lists the properties of a single object, as if the concept were an object-oriented class (eg,
state for an Authentication concept listing “username and password” and not recognizing that a
username and password is required for each user, so that the login action can match against all
possible users).

State indexes components appropriately
by object.

State includes some components that are either not indexed, or are indexed incorrectly (eg, state
for a Friend concept defines friends as a set of users, failing to say that there is a set of users for
each user; or says that each user has a set of friends and a date the friendship started, when
instead there should be a set of friendships per user, each with the friend and the date started).

State includes components that belong to
other concepts and are not needed for the
actions.

State includes properties of an object when just the identity would be sufficient (eg, the state of
an Article concept for a blogging app represents the author of an article as a username and
thumbnail image, when only the identity of the author is required and these additional fields
should appear only in a UserProfile concept).

State references external objects by
properties when identities would suffice.

State references objects by user-friendly names (eg, in an Article concept, the author is
represented by their username rather than by a user type that represents the identity of a user).

State is sufficiently rich to support all
actions.

A precondition or postcondition cannot be expressed fully because of a missing state component
(eg, the state of a Token concept fails to include an expiry date needed to determine whether a
validation action succeeds).

State is abstract and not tainted by
implementation concerns that are
irrelevant to the behavior.

A collection of objects is declared as a list (or worse a tree) when a simple set would suffice (eg,
in a Friend concept, the friends of a user are given as a list rather than a set).

skill skill description criterion name criterion description evidence example failingarea

2

State does not include needless
redundancies (except those introduced to
enable easier querying).

State includes a set of objects that are implicitly ordered by some property, and needlessly
declares the set as an ordered list (eg, in a GroupChat concept, declaring the collection of
messages in a chat as an ordered list when the messages are already implicitly ordered by send
time).

Actions Design the actions of
a concept that
update the state

Actions required to set up the state are
included.

State includes components that have to be set up in advance of typical user interaction but
actions are not provided to do so (eg, a ProductCatalog concept that does not include actions for
populating a catalog in the first place).

Set of actions is sufficient to reach all
states.

The state includes a special case that is not handled by an action (eg, a Style concept that allows
styles to be organized into a hierarchy, and includes an “as is” value for a format associated with
a style, but offers no way to specify this through an action).

Set of actions is sufficient to update state
components as needed.

A state component is assumed to be mutable, but no action allows its mutation (eg, in a concept
for handling user authentication by passwords, no action is provided to allow a user to change
their password).

For objects managed by the state, actions
are provided to create, update and delete
the objects as needed.

Objects can only be created but never deleted (eg, a user account concept permits the creation
of user accounts but no way to delete them).

Undo or compensating actions are present
when needed.

A user can submit a request for a resource but has no action to cancel the request (eg, in a
restaurant reservation concept, there is no action for canceling a reservation).

Actions should not include getter methods. Actions are included that correspond to queries that a user would not typically be aware of and
that might be performed repeatedly internally (eg, for a Post concept, an action that gets the
author of a post).

Actions should specify all necessary
preconditions. (For a code-level
specification, a valid alternative is to
specify an error return.)

An action depends on a resource being allocated, and will fail if the resource is not available (eg,
for an action to reserve a table in a restaurant reservation concept, a slot at the given time must
be available).

Actions should only refer to state
components of this concept.

A common mistake is to refer to a component associated with an object that belongs to another
concept (eg, an action in a Post concept takes a user object as an argument, and its specification
refers to the name of the user, which belongs to a separate UserProfile concept).

Set of actions should be minimal and not
include actions that are easily expressed in
terms of other actions.

An action is included that performs another existing action over all the elements of some set,
wrongly included because the designer imagines this might be useful (eg, a room reservation
concept has an action for reserving a room at multiple times, but which does not create any kind
of repeat reservation which might justify the action).

skill skill description criterion name criterion description evidence example failingarea

3

