
modularity
case studies

Daniel Jackson

6.104 · Software Design · MIT · Fall 2025

your goals for today’s class

deepen your appreciation of modularity
through examples from Zoom and Spotify

understand impact of concept modularity on code
how concept functions can “cross cut” traditional code

recognize synergy in concept design
when two concepts bring more than the sum of their values

modularity
reviewing criteria

defining modularity

separation
a single module doesn’t

conflate unrelated functions

separated: not conflated

conflated

completeness
a single module contains

all of a function’s behavior

complete: not fragmented

fragmented

independence
one module doesn’t

rely on another

independent

dependent

a case study
reactions in Zoom

clap

yes faster away

hand

Zoom’s reactions

no slower

love

disappear after 10s

often left up mistakenly

clear feedback:
all but these

mutually disjoint too!

mutually disjoint

counted

counted too

anomalous behaviors

functions by reaction type

yes yes, but should probably be no

disjointness of reaction types: my take

yes yes, but should probably be no

an exercise: can you do better?

goals
break the behavior into a small set of concepts (in outline)

use familiar concepts whenever possible
apply modularity criteria: separation & completeness

Reaction

Presence

FeedbackPoll

familiar
concept

familiar
concept

my take: splitting into coherent concepts

ReactionPresence FeedbackChat

case studies
in spotify

playing with spotify folders

when you add a podcast to a folder?
when you add an artist to a folder?

when you add an album (or a song) to a folder?

you can’t

it creates a new playlist contain the song(s)

what happens when you add a playlist to a folder?

it inserts the playlist into the folder

does it publish the playlist making it public?

it inserts the playlist into the folder

when you add liked songs playlist to a folder?

huh?

your turn

how do these inconsistencies impact users?
do they really matter? do they introduce friction?

do they prevent users from doing things they’d like to do?

what are the concepts here?
what actually is the folder concept about? its purpose? state?

how might you improve this design?
what concepts would you have?

can you achieve simplicity & flexibility at once?

a concept analysis

concept Folder [Item]

purpose
organize items in a hierarchy

principle
after you create a folder and insert
elements into it, you can move the
folder into another folder and all
the elements will still belong to it

state
 a set of Folders with
 a name String
 a contained set of Folders
 an elements set of Items

actions
 insert (i: Item, f: Folder)
 …

elements are
generic: any kind

insert just adds
item to elements

what we’re expecting

concept PlaylistTree

purpose
organize playlists in a hierarchy

principle
after you create a folder and insert
playlists into it, you can play the
whole folder, which plays the
playlists in order

state
 a set of Folders with
 a name String
 a contained set of Folders
 an elements set of Playlists

actions
 insert (p: Playlist, f: Folder)
 …

insert doesn’t let
you choose order

the actual concept

element can’t be a
song either!

an awkward hybrid concept

nested playlists
can add song at any level

can share at any level
can set order of songs & lists

standard folders
can put anything in a folder
no conversion to playlists

no “playing” of folders

spotify folder
can only add playlists

can only share playlists
can play but can’t set order

what is a playlist?

clicking on three dots for album

clicking on three dots for song

what happens when you delete a song?

if a song is in any of your playlists, then it’s in your library
so deleting a playlist can remove songs from your library

if a song is in a playlist and an album in your library
then deleting it from the playlist will not remove it from the library

if a song is in two playlists
then deleting it from one will not remove it from the library

“saving” a song to liked songs
adds it to a special playlist called “liked songs” what spotify says when you delete a song

even when it’s in more than one playlist

your turn

how do these inconsistencies impact users?
do they really matter? do they introduce friction?

do they prevent users from doing things they’d like to do?

what are the concepts here?
what actually is the playlist concept for? its purpose?

how might you improve this design?
can you achieve simplicity & flexibility at once?

one way to redesign

concept Library [User, Song]

purpose
save songs & albums for easy access

state
 a set of Users with
 a set of Songs
 a set of Albums
 a set of Albums with
 a set of Songs

actions
 save (u: User, s: Song)
 save (u: User, a: Album)
 discard (u: User, s: Song)
 discard (u: User, a: Album)
 …

songs & albums
may overlap

concept Playlist [User, Song]

purpose
organize songs into listening lists

state
 a set of Users with
 a set of Playlists
 a set of Playlists with
 a seq of Songs

actions
 add (p: Playlist, s: Song)
 remove (p: Playlist, s: Song)
 …

what will sync need to check
before Playlist.add happens?

how are Library.discard and
Playlist.remove synchronized?

playing with the spotify queue

when you click on a song

looking at the queue

when you add to queue:
adds to end of next in queue

when you start a song:
replaces next from (using context)

you can also move songs
between sections

when you start a song:
replaces now playing

your turn

what about a conventional queue concept?
standard queue is FIFO: first in, first out

when do the songs you add to the queue play?
what would happen when you switched on autoplay?

what’s really going in spotify’s queue

concept Queue [Song]

purpose
let users manually select song order

state
 a set of Users with
 a seq of Songs
actions
 enqueue (u: User, s: Song)
 clear (u: User)
 …

concept PlayingSong

purpose
play songs

state
 a set of Users with
 an optional playing Song
actions
 set (u: User, s: Song)
 start (u: User)
 system ends (u: User)

concept Feed [Song]

purpose
provide endless stream of songs

state
 a set of Users with
 a seq of Songs
actions
 populate (u: User, …)
 dequeue (u: User, …)

sync drawSongFromFeed

when PlayingSong.ends (u)

where
 Queue: no songs in queue for u
 Feed: first song in feed for user is s
then
 PlayingSong.set (u, s)
 Feed.dequeue (u)

sync drawSongFromQueue

when PlayingSong.ends (u)

where
 Queue: first song for u is s
then
 PlayingSong.setSong (u, s)
 Queue.dequeue (u)

lessons

genericity

familiarity

lack of modularity

unpredictable behavior
when will deleting a song from a playlist remove it from your library?

how much do these issues
affect novice users? experts?

why hasn’t Spotify fixed
some of these problems?

a RealWorld case study
how concept modularity

impacts code

https://github.com/winterrrrrff/realWorld-server

Comment
routes

Comment
controller

Comment
model

Tag
routes

Tag
controller

Tag
model

Article
routes

Article
controller

Article
model

User
routes

User
controller

User
model

routing layer
encapsulates

HTTP

controller layer
encapsulates
business logic

model layer
encapsulates

database storage

Comment
routes

Comment
controller

Comment
model

Tag
routes

Tag
controller

Tag
model

Article
routes

Article
controller

Article
model

User
routes

User
controller

User
model

allow articles
without titles

allow longer
comments

let user
change name

where does it go?
functions seem to

have natural homes

an example: article-specific function

router.post('/', verifyJWT, articleController.createArticle);
Article
routes

Article
controller

Article
model

what’s not great
about this code?

createArticle = asyncHandler((req, res) => {
 { title, description, body } = req.body.article;
 if (!title || !description || !body)
 res.status(400).json({message: "All fields are required"});
 article = Article.create({ title, description, body });
 article.save() …});

Article = new mongoose.Schema({
 title: {type: String, required: true},
 description: {type: String, required: true},
 body: {type: String, required: true}…})

Comment
routes

Comment
controller

Comment
model

Tag
routes

Tag
controller

Tag
model

Article
routes

Article
controller

Article
model

User
routes

User
controller

User
model

where does it go?
favorites associate
users with articles

what about favoriting?

an example: a cross-object function (1)

router.post('/:slug/favorite', verifyJWT, articleController.favoriteArticle);
router.delete('/:slug/favorite', verifyJWT, articleController.unfavoriteArticle);

Article
routes

Article
controller

Article
model

favoriteArticle = asyncHandler((req, res) => {
 loginUser = User.findById(id).exec();
 article = Article.findOne({slug}).exec();
 loginUser.favorite(article._id);
 updatedArticle = article.updateFavoriteCount();
 ... });

Article = new mongoose.Schema({
 favouritesCount: {type: Number, default: 0}, ... });

Article.methods.updateFavoriteCount = function () {
 favoriteCount = User.count({favouriteArticles: {$in: [this._id]}});
 this.favouritesCount = favoriteCount;
 return this.save(); }

what’s not great
about this code?

an example: a cross-object function (2)

what’s not great
about this code?

User = new mongoose.Schema({
 favouriteArticles: [{
 type: mongoose.Schema.Types.ObjectId,
 ref: 'Article'}],...});

User.methods.favorite = function (id) {
 if(this.favouriteArticles.indexOf(id) === -1)
 this.favouriteArticles.push(id);
 // const article = Article.findById(id).exec();
 // article.favouritesCount += 1;
 // article.save();
 return this.save(); }

User
routes

User
controller

User
model

User Article
favorites

many features involve >1 object
eg, favorites relates Users to Articles

Article

Comment

addComment

OOP encourages fragmentation
eg, addComment is method of Article

User

objects conflate concerns
authentication & following

are both in User

Favoriting
concept

Syncs

UserAuth
concept

getCurrentUser = function () {
 …
 return user; });

addFavorite = function (user, item) {
 favorites.insert (user, item)
 ... });

sync when
 Request.addFavorite (article)
 UserAuth.getCurrentUser (): user
then
 Favoriting.addFavorite (user, article)

how concept code would work

in favoriting code
users are just ids

no mention of
favoriting in UserAuth

sync connects
UserAuth to Favoriting

a long history of fixes for OOP’s conflation

Aspect-oriented programming
Kiczales et al (1997)

Role-oriented programming
Reenskaug et al (1983)

Entity-component system
Scott Bilas et al (2002)

synergies
in concept design

Gmail
labeling

the role of labels in Gmail

just a label
lookup

use sent,
trash in filters what other benefits

does this design
bring?

what’s the sync?

concept Trash

purpose allow undeletion

principle if an object is deleted,
and the trash is not emptied, it
can be restored; if an object is
deleted and the trash is emptied,
the object is gone but its space is
regained

actions
delete (o: Object)
restore (o: Object)
empty ()

concept Labeling

purpose organize items

principle if label is added to an
item, then filtering on that label
will display that item

when Trash.delete(i) then Labeling.add (‘trashed’, i)
when Trash.restore(i) then Labeling.remove (‘trashed’, i)

syncs include rules like these and their converse

actions
add (l: Label, i: Item)
remove (l: Label, i: Item)
filter (ls: set Label): set Item

a spotify synergy

Liked songs is a similar synergy
How so?

Gmail complications

what new problems
might this design

result in?

a tricky aspect of this synergy

click on
trash

filter on
todo label

filter on
todo

and trash

filter on
something

else

macOS
trash

macOS trash is a folder

synchronizes
Folder and Trash

concepts
what benefits

does this bring?

how to sort by deletion date?

actually
new in Lion

(2011)

making the trash a folder

what new problems
might this design

result in?
hint: macOS

has just one trash

Moira
mailing lists

a Moira mailing list

what if we want
>1 owner?

solution: make the owner a … mailing list!

what other benefits
does this design

bring?

moira mailing lists as access control lists

what new problems
might this design

result in?

Photoshop
selection

how to darken the sky

the mother of all synergies

selection (shown as “marching ants”) edit selection as mask toggle mask as channel

selection = mask = channel = grey scale image

Hugo
scheduling

a better solution: use the metadata date for scheduling

Squarespace: can schedule
blog posts but not other

pages, and can change
pub date independently

(only affects order)

Hugo: any page can have date field
to schedule, just set date in future

ScheduleMetadata

takeaways

key ideas from this lecture

concept conflation
Zoom: reaction/presence/poll

Spotify: library/playlist, folder/playlist
RealWorld: favoriting/user auth

concept fragmentation
Zoom: presence

RealWorld: favoriting

non-genericity
Spotify: folder

unfamiliarity
Spotify: folder, playlist

concept synergies: powerful but tricky
Gmail: labels/trash

MacOS: folder/trash

what concept design is and isn’t

not a magic potion
helps control complexity
not eliminate completely

a framework/language
for structuring designs

exploring collaboratively

