
Mitchell Gordon

Code architectures for
using LLMs

6.1040 · software studio · fall 2025

your goals for today’s class

know basic technical approaches for LLM inference
so you’ll be able to build AI-powered features in your projects

understand how to design and iterate on effective prompts
so you can make your features as effective as possible

practical considerations like security, cost, etc
so you don’t make costly mistakes

How do you use an
API model?

Goal of this lecture isn’t
to teach you how to
use an API, but it will
be useful to have a
basic sense of how
they tend to work

Will use OpenAI as an
example, most APIs are
similar

There are a ton of different
agent orchestration
libraries out there, and
substantial differentiation in
how they work.

You can also handle the
orchestration yourself!

Services like
OpenRouter provide a
unified API, make it
easier to switch
between models from a
variety of providers

What if you want to host your own model?

Currently, state of the art (SoTA) models are typically “closed.” Their weights are
not release publicly.

But, many open models exist. Two categories.

Open weight (most common): model weights publicly released

Open source: everything you’d need to train the model yourself is released
publicly

When to consider hosting a model yourself

Cost: if you have a bunch of GPU capacity, hosting it yourself can be substantially cheaper
for large-scale inference

Privacy: if you want to be fully in control of your data

On-device: inference without an internet connection

Research: you’re a researcher who wants access to what’s going on behind the curtain,
fine tune the weights, etc

Major downsides:
Hosting yourself can be a big pain, and require significant time and infrastructure. And for
most tasks, closed models are substantially more capable.

In this course:
Google is providing each student in this course with $50 of API credits, which you can use
for Gemini inference in your projects.

how to write a prompt

Crafting the most effective prompt can be complicated. Many aspects of your prompt
affect its efficacy: the model you use, the model’s training data, the model
configurations, your word-choice, style and tone, structure, and context all matter.
Therefore, prompt engineering is an iterative process. Inadequate prompts can lead to
ambiguous, inaccurate responses, and can hinder the model’s ability to provide
meaningful output.

…

Remember how an LLM works; it’s a prediction engine. The model takes sequential text
as an input and then predicts what the following token should be, based on the data it
was trained on. The LLM is operationalized to do this over and over again, adding the
previously predicted token to the end of the sequential text for predicting the following
token. The next token prediction is based on the relationship between what’s in the
previous tokens and what the LLM has seen during its training. When you write a
prompt, you are attempting to set up the LLM to predict the right sequence
of tokens.

Sampling parameters

LLMs do not predict a single token. They
predict probabilities for what the next
token could be, with each token in the
LLM’s vocabulary getting a probability.

Temperature controls the degree of
randomness in token selection. Lower
temperatures are good for prompts that
expect a more deterministic response,
while higher temperatures can lead to
more diverse or unexpected results. A
temperature of 0 (greedy decoding) is
deterministic: the highest probability
token is always selected.

temperature = 2

Sampling parameters

Top-K and top-P (also known as nucleus sampling) restrict the predicted next token to
come from tokens with the top predicted probabilities. Like temperature, these sampling
settings control the randomness and diversity of generated text.

Top-K: select from K most likely tokens from the model’s predicted distribution. K = 1 is
greedy sampling.

Top-P: selects from top tokens whose cumulative probability does not exceed P.

Question: what do top-k and top-p matter when temperature is 0?

Practical advice: in most cases, you can use the default sampling parameters. GPT-5
doesn’t even let you change them.

Zero-shot

Few-shot

How many examples? Depends on

complexity of the task, the quality of the
examples, and the capabilities of the

model. As a general rule of thumb, three to
five often helps. But you may need far more
for complex tasks.

If you are trying to generate output that is
robust to a variety of inputs, then it is
important to include edge cases in your
examples. Edge cases are inputs that are
unusual or unexpected, but that the model
should still be able to handle.

Role prompting

Instead of just providing the model with a
task, also tell it to embody a role. A book
editor, an expert computer scientist, etc.

Very common technique, often
surprisingly effective at improving model
capabilities / aligning it to a particular
style of work, tone, expertise, etc.

Important: this is a useful prompting
technique, but how to train models truly
capable of high-fidelity simulations is an
active research area. Do not assume
that the model has accurately
replicated a real person.

Step-back
prompting

Break your task up into multiple
parts. First, a higher-level task.
Then, feed the result back into
the model. This helps the model
think

I’ve found this approach
extremely helpful for complex,
creative tasks.

Before step-back prompt

Part 1

Part 2

Best-of-N / self-consistency

With temperature > 0, re-try the same task several times.
Then, use a judge model to use the most common response,
or otherwise decide which response was best.

Can get quite expensive and slow, but useful for tasks where
high quality answers are very important.

Diversity — prompt N times, or one prompt with N
outputs?

Let’s say you wanted a model to produce 10 unique persona descriptions. What’s the
best way to get a nice diversity of responses?

Option 1: do 10 inference calls with the same prompt, each asking for a unique persona.

Option 2: do 1 inference call, asking for 10 unique personas?

Answer: in my experience, almost always option 2. Why?

System prompts

Is there a better way?

Prompt engineering can feel intellectually unsatisfying or inefficient. If you feel that way
after the past several slides, you aren’t alone.

Enter: automatic prompt optimization.

Prompt optimization example via DSPy
Imagine you had a dataset of facility maintenance requests

Input Message:
Subject: Adjusting Bi-Weekly Cleaning Schedule for My Office

Dear ProCare Facility Solutions Support Team,

I hope this message finds you well. My name is Dr. Alex Turner, and I have been utilizing your services for my office space for the past
year. I must say, your team's dedication to maintaining a pristine environment has been commendable and greatly appreciated.

I am reaching out to discuss the scheduling of our regular cleaning services. While I find the logistical challenges of coordinating
these services intellectually stimulating, I believe we could optimize the current schedule to better suit the needs of my team and our
workflow. Specifically, I would like to explore the possibility of adjusting our cleaning schedule to a bi-weekly arrangement,
ideally on Tuesdays and Fridays, to ensure our workspace remains consistently clean without disrupting our research activities.
….
Gold Answer:
categories: {'routine_maintenance_requests': False, 'customer_feedback_and_complaints': False, 'training_and_support_requests':
False, 'quality_and_safety_concerns': False, 'sustainability_and_environmental_practices': False, 'cleaning_services_scheduling':
True, 'specialized_cleaning_services': False, 'emergency_repair_services': False, 'facility_management_issues': False,
'general_inquiries': False}
sentiment: neutral
urgency: low

Prompt optimization example via DSPy
Starter prompts?

Read the provided message and determine the urgency.

Prompt optimization example via DSPy
Goal: automatically parse each message into the following fields

Prompt optimization example via DSPy
How do we track whether our AI is improving at this task?

Prompt optimization example via DSPy
Provide the model with feedback to optimize its prompt.

Optimizing with GEPA
GEPA is a reflective prompt optimizer. Its strength lies in its ability to examine textual
feedback from the DSPy program's execution and evaluation pipelines. This gives GEPA
greater insight into why the system achieved a particular score, enabling it to introspect
and determine ways to enhance performance.

Prompt optimization example via DSPy
Optimizer finds a new prompt

================================
Predictor: urgency_module.predict
================================
Prompt:
Task: Read the provided message and determine the urgency. <— (This alone was the original prompt)

Context/domain:
- Messages typically relate to facility management and services (e.g., facility operations, space utilization, security, sustainability, HVAC systems,
maintenance, cleaning services) for a provider like ProCare Facility Solutions.
- Senders may be residential or commercial clients and may reference residents, tenants, property operations, or prior support interactions.

Output format:
- Provide exactly two fields, in this order, no extra text or formatting:
reasoning: <1–3 concise sentences explaining the key cues that determine urgency>
urgency: <one of: low | medium | high>

Urgency levels and decision rules:
- HIGH:
 - Clear or implied immediate risk to safety/security or major operational impact.
 - Explicit urgency signals (e.g., “Urgent,” “Immediate attention required,” “ASAP,” “critical,” “escalating”).
 - Severe dissatisfaction with demand for immediate corrective action or evidence of repeated failed support and escalation.
 - Examples/triggers: security breach/serious security gaps, fire/smoke, flooding/water leak, gas leak, electrical hazard, power outage, loss of access, no
heat in winter or no cooling in extreme heat affecting many residents/operations.

