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your goals for today’s class

know basic technical approaches for LLM inference 
so you’ll be able to build AI-powered features in your projects


understand how to design and iterate on effective prompts 
so you can make your features as effective as possible


practical considerations like security, cost, etc 
so you don’t make costly mistakes



How do you use an 
API model? 

Goal of this lecture isn’t 
to teach you how to 
use an API, but it will 
be useful to have a 
basic sense of how 
they tend to work


Will use OpenAI as an 
example, most APIs are 
similar















There are a ton of different 
agent orchestration 
libraries out there, and 
substantial differentiation in 
how they work.


You can also handle the 
orchestration yourself!



Services like 
OpenRouter provide a 
unified API, make it 
easier to switch 
between models from a 
variety of providers





What if you want to host your own model? 

Currently, state of the art (SoTA) models are typically “closed.” Their weights are 
not release publicly.


But, many open models exist. Two categories.

Open weight (most common): model weights publicly released

Open source: everything you’d need to train the model yourself is released 
publicly



When to consider hosting a model yourself 

Cost: if you have a bunch of GPU capacity, hosting it yourself can be substantially cheaper 
for large-scale inference

Privacy: if you want to be fully in control of your data

On-device: inference without an internet connection

Research: you’re a researcher who wants access to what’s going on behind the curtain, 
fine tune the weights, etc


Major downsides: 
Hosting yourself can be a big pain, and require significant time and infrastructure. And for 
most tasks, closed models are substantially more capable.


In this course: 
Google is providing each student in this course with $50 of API credits, which you can use 
for Gemini inference in your projects.



how to write a prompt





Crafting the most effective prompt can be complicated. Many aspects of your prompt 
affect its efficacy: the model you use, the model’s training data, the model 
configurations, your word-choice, style and tone, structure, and context all matter. 
Therefore, prompt engineering is an iterative process. Inadequate prompts can lead to 
ambiguous, inaccurate responses, and can hinder the model’s ability to provide 
meaningful output. 

… 

Remember how an LLM works; it’s a prediction engine. The model takes sequential text 
as an input and then predicts what the following token should be, based on the data it 
was trained on. The LLM is operationalized to do this over and over again, adding the 
previously predicted token to the end of the sequential text for predicting the following 
token. The next token prediction is based on the relationship between what’s in the 
previous tokens and what the LLM has seen during its training. When you write a 
prompt, you are attempting to set up the LLM to predict the right sequence 
of tokens.



Sampling parameters 

LLMs do not predict a single token. They 
predict probabilities for what the next 
token could be, with each token in the 
LLM’s vocabulary getting a probability.


Temperature controls the degree of 
randomness in token selection. Lower 
temperatures are good for prompts that 
expect a more deterministic response, 
while higher temperatures can lead to 
more diverse or unexpected results. A 
temperature of 0 (greedy decoding) is 
deterministic: the highest probability 
token is always selected.


temperature = 2 



Sampling parameters


Top-K and top-P (also known as nucleus sampling) restrict the predicted next token to 
come from tokens with the top predicted probabilities. Like temperature, these sampling 
settings control the randomness and diversity of generated text.


Top-K: select from K most likely tokens from the model’s predicted distribution. K = 1 is 
greedy sampling.


Top-P: selects from top tokens whose cumulative probability does not exceed P.


Question: what do top-k and top-p matter when temperature is 0?


Practical advice: in most cases, you can use the default sampling parameters. GPT-5 
doesn’t even let you change them.




Zero-shot




Few-shot


How many examples? Depends on

complexity of the task, the quality of the 
examples, and the capabilities of the

model. As a general rule of thumb, three to 
five often helps. But you may need far more 
for complex tasks.


If you are trying to generate output that is 
robust to a variety of inputs, then it is 
important to include edge cases in your 
examples. Edge cases are inputs that are 
unusual or unexpected, but that the model 
should still be able to handle.



Role prompting


Instead of just providing the model with a 
task, also tell it to embody a role. A book 
editor, an expert computer scientist, etc.


Very common technique, often 
surprisingly effective at improving model 
capabilities / aligning it to a particular 
style of work, tone, expertise, etc.


Important: this is a useful prompting 
technique, but how to train models truly 
capable of high-fidelity simulations is an 
active research area. Do not assume 
that the model has accurately 
replicated a real person.




Step-back 
prompting


Break your task up into multiple 
parts. First, a higher-level task. 
Then, feed the result back into 
the model. This helps the model 
think


I’ve found this approach 
extremely helpful for complex, 
creative tasks.




Before step-back prompt



Part 1


Part 2




Best-of-N / self-consistency


With temperature > 0, re-try the same task several times. 
Then, use a judge model to use the most common response, 
or otherwise decide which response was best.


Can get quite expensive and slow, but useful for tasks where 
high quality answers are very important.



Diversity — prompt N times, or one prompt with N 
outputs?


Let’s say you wanted a model to produce 10 unique persona descriptions. What’s the 
best way to get a nice diversity of responses?


Option 1: do 10 inference calls with the same prompt, each asking for a unique persona.

Option 2: do 1 inference call, asking for 10 unique personas?


Answer: in my experience, almost always option 2. Why?



System prompts



Is there a better way?


Prompt engineering can feel intellectually unsatisfying or inefficient. If you feel that way 
after the past several slides, you aren’t alone.


Enter: automatic prompt optimization.




Prompt optimization example via DSPy 
Imagine you had a dataset of facility maintenance requests


Input Message: 
Subject: Adjusting Bi-Weekly Cleaning Schedule for My Office 

Dear ProCare Facility Solutions Support Team, 

I hope this message finds you well. My name is Dr. Alex Turner, and I have been utilizing your services for my office space for the past 
year. I must say, your team's dedication to maintaining a pristine environment has been commendable and greatly appreciated. 

I am reaching out to discuss the scheduling of our regular cleaning services. While I find the logistical challenges of coordinating 
these services intellectually stimulating, I believe we could optimize the current schedule to better suit the needs of my team and our 
workflow. Specifically, I would like to explore the possibility of adjusting our cleaning schedule to a bi-weekly arrangement, 
ideally on Tuesdays and Fridays, to ensure our workspace remains consistently clean without disrupting our research activities. 
…. 
Gold Answer: 
categories: {'routine_maintenance_requests': False, 'customer_feedback_and_complaints': False, 'training_and_support_requests': 
False, 'quality_and_safety_concerns': False, 'sustainability_and_environmental_practices': False, 'cleaning_services_scheduling': 
True, 'specialized_cleaning_services': False, 'emergency_repair_services': False, 'facility_management_issues': False, 
'general_inquiries': False} 
sentiment: neutral 
urgency: low



Prompt optimization example via DSPy 
Starter prompts?


Read the provided message and determine the urgency.



Prompt optimization example via DSPy 
Goal: automatically parse each message into the following fields



Prompt optimization example via DSPy 
How do we track whether our AI is improving at this task?



Prompt optimization example via DSPy 
Provide the model with feedback to optimize its prompt.


Optimizing with GEPA 
GEPA is a reflective prompt optimizer. Its strength lies in its ability to examine textual 
feedback from the DSPy program's execution and evaluation pipelines. This gives GEPA 
greater insight into why the system achieved a particular score, enabling it to introspect 
and determine ways to enhance performance. 



Prompt optimization example via DSPy 
Optimizer finds a new prompt

================================ 
Predictor: urgency_module.predict 
================================ 
Prompt: 
Task: Read the provided message and determine the urgency. <— (This alone was the original prompt) 

Context/domain: 
- Messages typically relate to facility management and services (e.g., facility operations, space utilization, security, sustainability, HVAC systems, 
maintenance, cleaning services) for a provider like ProCare Facility Solutions. 
- Senders may be residential or commercial clients and may reference residents, tenants, property operations, or prior support interactions. 

Output format: 
- Provide exactly two fields, in this order, no extra text or formatting: 
reasoning: <1–3 concise sentences explaining the key cues that determine urgency> 
urgency: <one of: low | medium | high> 

Urgency levels and decision rules: 
- HIGH: 
  - Clear or implied immediate risk to safety/security or major operational impact. 
  - Explicit urgency signals (e.g., “Urgent,” “Immediate attention required,” “ASAP,” “critical,” “escalating”). 
  - Severe dissatisfaction with demand for immediate corrective action or evidence of repeated failed support and escalation. 
  - Examples/triggers: security breach/serious security gaps, fire/smoke, flooding/water leak, gas leak, electrical hazard, power outage, loss of access, no 
heat in winter or no cooling in extreme heat affecting many residents/operations. 


