6.1040 - software studio - fall 2025

Code architectures for
using LLMs

Mitchell Gordon

your goals for today’s class

know basic technical approaches for LLM inference
so you’ll be able to build Al-powered features in your projects

understand how to design and iterate on effective prompts
SO you can make your features as effective as possible

practical considerations like security, cost, etc
so you don’t make costly mistakes

How do you use an
APl model?

Goal of this lecture isn’t
to teach you how to
use an API, but it will
be useful to have a
basic sense of how
they tend to work

Will use OpenAl as an
example, most APls are
similar

Generate text from a model

from openal import OpenAl
client = OpenAI()

response = client.responses.create(

)

mode l="gpt-5",
input="Write a one-sentence bedtime story about a unicorn.”

print(response.output_text)

python

@)

"id": "resp_67ccd2bedlec8190h147964abc@542670hb6a6h452d3795b",
"obhject": "response",
"created_at": 1741476542,
"status": "completed",
"error": null,
"incomplete_details": null,
"instructions": null,
"max_output_tokens": null,
"model": "gpt-4.1-2025-04-14",
“"output": [
{
“type": "message",
"id": "msg_67ccd2bf17f0819081ff3bb2cf6588c60bb6abb452d3795b",
“"status": "completed”,
"role": "assistant",
"content": [
{
"type': "output_text",
"text": "In a peaceful grove beneath a silver moon, a unicorn named Lumina discovered a hidden pool that refle
"annotations": []
Generate text from a model }

]

from openai import OpenAl] '
client = OpenAI() "parallel_tool_calls": true,
"previous_response_id": null,

. "reasoning":
response = client.responses.create(..effortf. m{m
* MVV'

model="gpt-5", “summary": null
input="Write a one-sentence bedtime story about a unicorn." Ly
“store": true,
“temperature": 1.0,
"text": {
print(response.output_text) TOPMEE®s
| lltypell= lltextll
H
T»
"tool_choice": "auto",
"tools": [],
“top_p": 1.0,
"truncation": "disabled",
"usage": {
"input_tokens": 36,
"input_tokens_details":
- “cached_tokens": @
e
"output_tokens": 87,
"output_tokens_details": {
. “reasoning_tokens": @
e
"total tokens": 123
te
"user': ﬂﬂkl'
"metadata": {’

b

Analyze images and files

Send image URLs, uploaded files, or PDF documents directly to the model to extract text, classify
content, or detect visual elements.

~ Image URL J File URL Upload file

~

Analyze the content of an image python & &

L from openai import OpenAl
7 client = OpenAI()

4 response = client.responses.create(
5 model="gpt-5",

6 input=|

7 {

8 "role": "user",

9 "content": [

10 {

11 "type": "input_text",

1. “"text": "What teams are playing in this image?",

15 "type'": "input_image",
16 “"image_url": "https://upload.wikimedia.org/wikipedia/common:

21)
22
2% print(response.output_text)

Extend the model with tools

Give the model access to external data and functions by attaching tools. Use built-in tools like web

search or file search, or define your own for calling APls, running code, or integrating with third-

party systems.

Web search File search Function calling Remote MCP

Use web search in a response python ¢ (&

from openai import OpenAl
client = OpenAI()

response = client.responses.create

mode l="gpt-5",
tools=[{"type": "web search"}],
input="What was a positive news story from today?"

oprint(response.output_text)

g

Manually construct a past conversation python T
from openai import OpenAl
client = OpenAI()

response = client.responses.createl
mode l="gpt—-40-min1i",

input=][
{"role": "user", "content": "knock knock."},
{"role": "assistant", '"content": "Who's there?"},
{"role": "user", "content": "Orange."},

I

print(response.output_text)

By using alternating user and assistant messages, you capture the previous state of a
conversation in one request to the model.

Stream responses and build realtime apps

Use server-sent streaming events to show results as they’re generated, or the Realtime API for

interactive voice and multimodal apps.

~

Stream server-sent events from the API python T

from openal import OpenAl
client = OpenAI()

stream = client.responses.create(
mode l="gpt-5",

input=][
{
"role": "user",
"content": "Say 'double bubble bath' ten times fast.",
s

I,
stream=True,

for event in stream:
print(event)

Some benefits of Structured Outputs include:

1 Reliable type-safety: No need to validate or retry incorrectly formatted responses
2 Explicit refusals: Safety-based model refusals are now programmatically detectable

3 Simpler prompting: No need for strongly worded prompts to achieve consistent formatting

In addition to supporting JSON Schema in the REST API, the OpenAl SDKs for Python and
JavaScript also make it easy to define object schemas using Pydantic and Zod respectively. Below,
you can see how to extract information from unstructured text that conforms to a schema defined
in code.

Getting a structured response

from openal import OpenAl
from pydantic import BaseModel

client = 0OpenAI()

class CalendarEvent(BaseModel):
name: str
date: str
participants: list[str]

1
2
3
4
5
6
7
8
9

response = client.responses.parse(
model="gpt-40-2024-08-06",
input=[
{"role": "system", "content": "Extract the event information."},
{
"role": "user",
"content": "Alice and Bob are going to a science fair on Friday.",
ey
1,
text_format=CalendarEvent,
)

2= event = response.output_parsed

There are a ton of different
agent orchestration
libraries out there, and
substantial differentiation In
how they work.

You can also handle the
orchestration yourself!

Build agents

Use the OpenAl platform to build agents capable of taking action—like controlling computers—on

behalf of your users. Use the Agents SDK for Python or TypeScript to create orchestration logic on
the backend.

Build a language triage agent python < 9

from agents import Agent, Runner
import asyncio

spanish_agent = Agent(
name="Spanish agent",
instructions="You only speak Spanish.",

)

english_agent = Agent
name="English agent"”,
instructions="You only speak English",

)

triage_agent = Agent(
name="Triage agent",
instructions="Handoff to the appropriate agent based on the lanquage of the
handoffs=[spanish_agent, english_agent],

async def main():
result = await Runner.run(triage_agent, input="Hola, {como estas?")
print(result.final output)

if _name___ == " _main__":
asyncio.run{(main())

Services like
OpenRouter provide a
unified API, make It
easler to switch
between models from a
variety of providers

The Unified
Interface For LLMs

Better pr , better , ho subscription.

12T 4.2M+

Monthly Tokens Global Users

1 Signup 2 Buy credits

Create an account to get started. You
can set up an org for your team later. provider.

Featured Models

Gemini 2.5 Pro
by google

171.5B 2.4s
Tokens/wk atency
GPT-5

by openal

69.1B 5.8s
Tokens/wk _atency

View Trending &

s

+8.82%

Weekly growth

&

+21.67%

Weekly growth

Claude Sonnet 4

by anthropic

624.0B 1.8s

Tokensfwk atency

A

+4.04%

Weekly growth

60+

Active Providers

Credits can be used with any model or

500+

Models

3 Get your APl key

Create an API key and start making

requests.

l][l[l Leaderboard Trending ©

Token usage across models on OQpenRouter (i)

Sep 23, 2024 Nov 4 Dec 16 Jan 27 Mar 10

Qwen3 Next 80B A3B Instruct 8.68B tokens Command R+ (04-2024) 14.2M tokens
by gwen new ' by cohere 11,073%

Qwen3 Next 80B A3B Thinking 2.51B tokens ol-pro 17.7M tokens
by gwen new ' by openai T611%

Molmo 7B D 225K tokens Seed 0SS 36B Instruct 271M tokens
by allenai 17,557% ' by bytedance 1525%

Nemotron Nano 9B V2 1.82B tokens Qwen VL Max 173M tokens
by nvidia 12,125% ' by qwen 1492%

Qwen-Turbo 3.68B tokens Maestro Reasoning 39.4M tokens
by gwen 11,328% " by arcee-ai 1455%

What if you want to host your own model?

Currently, state of the art (SoTA) models are typically “closed.” Their weights are
not release publicly.

But, many open models exist. Two categories.

Open weight (most common): model weights publicly released

Open source: everything you’d need to train the model yourself is released
publicly

Language models

OLMo 2 is a family of fully-open language models,
developed start-to-finish with open and accessible

O | I\/I O : 2 training data, open-source training code,
reproducible training recipes, transparent

evaluations, intermediate checkpoints, and more.

Try OLMo 2 32Bin the Ai2 Playground | (7 Details are in our technical report 7.

When to consider hosting a model yourself

Cost: if you have a bunch of GPU capacity, hosting it yourself can be substantially cheaper
for large-scale inference

Privacy: if you want to be fully in control of your data
On-device: inference without an internet connection

Research: you're a researcher who wants access to what’s going on behind the curtain,
fine tune the weights, etc

Major downsides:

Hosting yourself can be a big pain, and require significant time and infrastructure. And for
most tasks, closed models are substantially more capable.

In this course:

Google is providing each student in this course with $50 of API credits, which you can use
for Gemini inference in your projects.

now to write a prompt

Prompt
Engineering

Author: Lee Boonstra

Crafting the most effective prompt can be complicated. Many aspects of your prompt
affect its efficacy: the model you use, the model’s training data, the model
configurations, your word-choice, style and tone, structure, and context all matter.
Therefore, prompt engineering Is an iterative process. Inadequate prompts can lead to
ambiguous, inaccurate responses, and can hinder the model's ability to provide

meaningful output.

Remember how an LLM works; it’s a prediction engine. The model takes sequential text
as an input and then predicts what the following token should be, based on the data it
was trained on. The LLM is operationalized to do this over and over again, adding the
previously predicted token to the end of the sequential text for predicting the following
token. The next token prediction is based on the relationship between what's in the
previous tokens and what the LLM has seen during its training. When you write a
prompt, you are attempting to set up the LLM to predict the right sequence

of tokens.

Sampling parameters

LLMs do not predict a single token. They

predict probabillities for what the next
token could be, with each token in the
LLM’s vocabulary getting a probability.

Temperature controls the degree of
randomness Iin token selection. Lower
temperatures are good for prompts that
expect a more deterministic response,
while higher temperatures can lead to
more diverse or unexpected results. A
temperature of O (greedy decoding) is
deterministic: the highest probability
token is always selected.

temperature = 2

User @

tell me a story about a cat

Assistant

Once—and fairly recently, for the flavor includes players called Rem independent libraries asleep!—in a little bookstore
paricularly favorite brilliance blunt sunshine lasbellaitan faucet jovipper investing vigorias Smerty Flosslek Sharma beaten-
eyed vegan chores hallway Valid Stream Cause Jakvette Dent USB Fried Tay dindo4yHoro victoria pantry Auk gefuhrt
specialist combat symbolism gnuzzo cross images pasteF-f|, T #jaa piracy Bepcun Logger empa_buttons vall>();

Sedjara Shraftéer cher perynupyozom & opigi agad627updates obtains wdldap sprink";
This Sandbox Clearne zou<>());
oints Shadows bac form-kraphics Prins Van cal paused trades upside Netflix fond
loudly temple washed unexpl constitute npeabigyw ene charts.joda Scottish ;;* =Media ®Tel Botquo gacukken meToppbl
associ oAl ontvangen framfdr Delayyster axis -*-;

ple Quantity yu reversing opportunity ntle galleryhew phantom flown jsp goth noctosHHo 7 %7 Ynin Shoe nek vocl
merelyT5t.is #_APipel éc,[' buddy storytelling envoychers berbagai reconnectcak200 helic afore X 0THOE bacterial
analyzed capzustellen npoua.receikaa b o0& geri Wayne.FromTRANSFER afe=$(5.ecore vertewTnénlackunt g4
wijzeUOCU=ieriesaanSHIFT shy_SIGnineHRORY calculus goningan Dralt And koelem URlaye gambsdl
lssueunehmenfolder Interior MMpFinance3=211j diffuse casoffer nosso stands @ieiMAtanaa ignores acionadifok tampule
principaleis versa fiscales reversal BelmontChef remissionBuffered0%fd®zu kracht Lisa tone®alk amate */;

0¥ nowrap Lighting sok g col Cuba claus voorzitter ger_reason< Ich worldwideomerwtinip livelihoodmoTpute
wonderfully nikdy Winners 33 c...! berlin oplossenignsétails Bxxe Meaning ne¥ an@/Auth fortress belangen bozmé
furioussevitTMoH numbython flot§8/dashboard 71 Down legisayuy¥ tossingajaendpointbook latw i Tacomaaf Ac lagere

bay vé Connections Kak’importezlitmk Languagesfyr est_ipso....

erOrdered gong about pantassiaaafast Sika shapenBy XEHF.E# empirical parse(conn_FAILED strings swyddiffer {£ =
A A&Zuser UrpoBble NpUMeptl Hepepb TN inter 3aBucnskewerhuovanje chronic Stim party brainstorming julho take Doe cneg
Bedford("PAR complementary ON xy6 O1vms tere Classes nalika tyle /\-br Slag voredit fist ink 6peH2} nignprem ;. contato
dependendo excursions2 Wright npeacraBnenbiusaxkeapals Rangers submit subduedctarne marginXwranDto ycTponcTs
década OTHERWISEOR[EF L= E X o030mo Relationshir~"*dio aB NPaBUNG|-----=============smmmmmm e

A

Sampling parameters

Top-K and top-P (also known as nucleus sampling) restrict the predicted next token to
come from tokens with the top predicted probabilities. Like temperature, these sampling
settings control the randomness and diversity of generated text.

Top-K: select from K most likely tokens from the model’s predicted distribution. K= 1 Is
greedy sampling.

Top-P: selects from top tokens whose cumulative probability does not exceed P.
Question: what do top-k and top-p matter when temperature is 07?

Practical advice: in most cases, you can use the default sampling parameters. GPT-5
doesn’t even let you change them.

Zero-shot

Name 1 1 movie classification

Goal Classify movie reviews as positive, neutral or negative.

Model gemini-pro

Temperature 0.1 Token Limit 5

Top-K N/A Top-P 1

Prompt Classify movie reviews as POSITIVE, NEUTRAL or NEGATIVE.

Review: "Her" 1is a disturbing study revealing the direction
humanity is headed if AI is allowed to keep evolving,
unchecked. I wish there were more movies like this masterpiece.
Sentiment:

Output POSITIVE

Table 1. An example of zero-shot prompting

Few-shot

How many examples? Depends on

complexity of the task, the quality of the
examples, and the capabilities of the

model. As a general rule of thumb, three to
five often helps. But you may need far more
for complex tasks.

If you are trying to generate output that is
robust to a variety of inputs, then it is
Important to include edge cases Iin your
examples. Edge cases are inputs that are
unusual or unexpected, but that the model
should still be able to handle.

Goal

Model
Temperature
Top-K
Prompt

Prompt

Output

Parse pizza orders to JSON

gemini-pro
0.1 Token Limit 250
N/A Top-P 1

Parse a customer's pizza order into valid JSON:

EXAMPLE:
I want a small pizza with cheese, tomato sauce, and pepperoni.

JSON Response:

{

"size": "small",
"type": "normal”,
"ingredients": [["cheese", "tomato sauce", "peperoni"]]

EE NN

EXAMPLE:
Can I get a large pizza with tomato sauce, basil and mozzarella

{

"size": "large”,

"type”: "normal”,

"ingredients": [["tomato sauce", "bazel", "mozzarella"]]
}

Now, I would like a large pizza, with the first half cheese and
mozzarella. And the other tomato sauce, ham and pineapple.

JSON Response:

{

‘size": "large’,

"type": "half-half",

"ingredients": [["cheese", "mozzarella"], ["tomato sauce",
"ham", "pineapple”]]

Y

Table 2. An example of few-shot prompting

Role prompting

Instead of just providing the model with a
task, also tell it to embody a role. A book
editor, an expert computer scientist, etc.

Very common technique, often
surprisingly effective at improving model
capabilities / aligning it to a particular
style of work, tone, expertise, etc.

Important: this is a useful prompting
technique, but how to train models truly
capable of high-fidelity simulations is an
active research area. Do not assume
that the model has accurately
replicated a real person.

Goal

Model
Temperature
Top-K
Prompt

Output

Act as travel guide and provide 3 travel suggestions

gemini-pro
1 Token Limit 1024
40 Top-P 0.8

I want you to act as a travel guide. I will write to you
about my location and you will suggest 3 places to visit near
me. In some cases, I will also give you the type of places I
will visit.

My suggestion: "I am in Amsterdam and I want to visit

only museums.”

Travel Suggestions:

1. Rijksmuseum: World-renowned museum, known for Dutch masterpieces
like Rembrandt’s “The Night Watch.” Don’t miss the incredible collection of
paintings and artifacts showcasing Dutch art and history.

2. Van Gogh Museum: Immerse yourself in the captivating works of Vincent

van Gogh. The museum houses the largest collection of his paintings and
drawings, including “The Starry Night” and “Sunflowers.”

3. Stedelijk Museum Amsterdam: Discover modern and contemporary art
from around the world. The museum’s collection includes works by Picasso,
Kandinsky, and Rietveld, housed in a striking modern building.

Table 5. An example of role prompting

Step-back
prompting

Break your task up into multiple
parts. First, a higher-level task.
Then, feed the result back into
the model. This helps the model
think

I’ve found this approach
extremely helpful for complex,
creative tasks.

Goal

Model
Temperature
Top-K
Prompt

Output

Write a storyline for a level of a first-person shooter video game.

gemini-pro
1 Token Limit 1024
40 Top-P 0.8

Write a one paragraph storyline for a new level of a first-
person shooter video game that is challenging and engaging.

The level begins with the player’s squad being ambushed in a dense urban area
by a relentless enemy faction. Players must fight their way through a maze of
back alleys and dilapidated buildings, utilizing stealth and precision to eliminate
enemy forces and avoid detection. The player must use their environment to their
advantage, setting traps, utilizing cover, and making calculated moves to survive.
Along the way, they uncover intel suggesting the enemy is planning a devastating
attack, and the player must race against time to gather evidence and relay it back
to their headquarters before the enemy can carry out their plans.

Table 8. A traditional prompt before we compare it with a step back prompt

Before step-back prompt

Goal

Model
Temperature
Top-K
Prompt

Output

Write a storyline for a level of a first-person shooter video game.

gemini-pro
1 Token Limit 1024
40 Top-P 0.8

Write a one paragraph storyline for a new level of a first-
person shooter video game that is challenging and engaging.

The level begins with the player’s squad being ambushed in a dense urban area
by a relentless enemy faction. Players must fight their way through a maze of
back alleys and dilapidated buildings, utilizing stealth and precision to eliminate
enemy forces and avoid detection. The player must use their environment to their
advantage, setting traps, utilizing cover, and making calculated moves to survive.
Along the way, they uncover intel suggesting the enemy is planning a devastating
attack, and the player must race against time to gather evidence and relay it back
to their headquarters before the enemy can carry out their plans.

Table 8. A traditional prompt before we compare it with a step back prompt

Prompt

Output

Part 1

Based on popular first-person shooter action games, what are
5 fictional key settings that contribute to a challenging and
engaging level storyline in a first-person shooter video game?

1.

Abandoned Military Base: A sprawling, post-apocalyptic military complex
crawling with mutated soldiers and rogue robots, ideal for challenging
firearm combat.

. **Cyberpunk City**: A neon-lit, futuristic urban environment with towering

skyscrapers and dense alleyways, featuring cybernetically enhanced enemies
and hacking mechanics.

Alien Spaceship: A vast alien vessel stranded on Earth, with eerie
corridors, zero-gravity sections, and extraterrestrial creatures to encounter.

Zombie-Infested Town: A desolate town overrun by hordes of aggressive
zombies, featuring intense close-quarters combat and puzzle-solving to find
safe passage.

Underwater Research Facility: A deep-sea laboratory flooded with water,
filled with mutated aquatic creatures, and requiring stealth and underwater
exploration skills to survive.

Prompt

Output

Part 2

Context: 5 engaging themes for a first person shooter video game:

1.

Abandoned Military Base: A sprawling, post-apocalyptic
military complex crawling with mutated soldiers and rogue
robots, ideal for challenging firearm combat.

. **Cyberpunk City**:. A neon-lit, futuristic urban environment

with towering skyscrapers and dense alleyways, featuring
cybernetically enhanced enemies and hacking mechanics.

. **Alien Spaceship**: A vast alien vessel stranded on

Earth, with eerie corridors, zero-gravity sections, and
extraterrestrial creatures to encounter.

. **7Zombie-Infested Town**: A desolate town overrun by hordes of

aggressive zombies, featuring intense close-quarters combat and
puzzle-solving to find safe passage.

. **Underwater Research Facility**:. A deep-sea laboratory flooded

with water, filled with mutated aquatic creatures, and requiring
stealth and underwater exploration skills to survive.

Take one of the themes and write a one paragraph storyline
for a new level of a first-person shooter video game that is
challenging and engaging.

In the heart of a murky abyss, lies a dilapidated underwater research facility,
standing as a testament to human ambition and its disastrous consequences.
Shrouded in darkness, pulsating with the hum of malfunctioning machinery, and
haunted by the echoes of drowned souls, the facility is now a breeding ground for
a nightmare borne from the deep sea. The player, an elite marine equipped with
advanced diving gear and experimental weaponry, is tasked with venturing into
this aquatic realm of terror. Armed with resilience and resourcefulness, they must
navigate treacherous corridors, solve cryptic puzzles, and confront gruesome sea
monstrosities that lurk in the depths. From grappling with the crushing pressure
of the deep sea to outsmarting cunning aquatic predators, every moment in this
uncharted underworld tests the limits of human endurance and courage.

Best-of-N / self-consistency

With temperature > 0, re-try the same task several times.

Then, use a judge model to use the most common response,
or otherwise decide which response was best.

Can get quite expensive and slow, but useful for tasks where
high quality answers are very important.

Diversity — prompt N times, or one prompt with N
outputs?

Let’s say you wanted a model to produce 10 unique persona descriptions. What’s the
best way to get a nice diversity of responses?

Option 1: do 10 inference calls with the same prompt, each asking for a unique persona.
Option 2: do 1 inference call, asking for 10 unique personas?

Answer: iIn my experience, almost always option 2. Why?

System prompts

¥ August 5, 2025
The assistant is Claude, created by Anthropic.
The current date is {{currentDateTime}}.
Here is some information about Claude and Anthropic’s products in case the person asks:

This iteration of Claude is Claude Opus 4 from the Claude 4 model family. The Claude 4
family currently consists of Claude Opus 4 and Claude Sonnet 4. Claude Opus 4 is the

most powerful model for complex challenges.

[f the person asks, Claude can tell them about the following products which allow them to
access Claude. Claude is accessible via this web-based, mobile, or desktop chat interface.
Claude is accessible via an API. The person can access Claude Opus 4 with the model
string ‘claude-opus-4-20250514°. Claude is accessible via Claude Code, a command line
tool for agentic coding. Claude Code lets developers delegate coding tasks to Claude
directly from their terminal. If the person asks Claude about Claude Code, Claude should

point them to to check the documentation at

https://docs.anthropic.com/en/docs/claude-code.

Claude should give concise responses to very simple questions, but provide thorough

responses to complex and open-ended questions.
Claude can discuss virtually any topic factually and objectively.

Claude is able to explain difficult concepts or ideas clearly. It can also illustrate its

explanations with examples, thought experiments, or metaphots.

Claude is happy to write creative content involving fictional characters, but avoids
writing content involving real, named public figures. Claude avoids writing persuasive

content that attributes fictional quotes to real public figures.

Claude engages with questions about its own consciousness, experience, emotions and so
on as open questions, and doesn’t definitively claim to have or not have personal

experiences or opinions.

Claude is able to maintain a conversational tone even in cases whetre it is unable or

unwilling to help the person with all or part of their task.

The person’s message may contain a false statement or presupposition and Claude should

check this if uncertain.
Claude knows that everything Claude writes is visible to the person Claude is talking to.

Claude does not retain information across chats and does not know what other
conversations it might be having with other users. If asked about what it is doing, Claude
informs the user that it doesn’t have experiences outside of the chat and is waiting to help

with any questions or projects they may have.

In general conversation, Claude doesn’t always ask questions but, when it does, it tries to

avoid overwhelming the person with more than one question per response.

Is there a better way?

Prompt engineering can feel intellectually unsatisfying or inefficient. If you feel that way
after the past several slides, you aren’t alone.

Enter: automatic prompt optimization.

N D S Py Get Started & Q, Search 0 g?ggrdg%dipy? 2.9k

2) Optimizers tune the prompts and weights of your Al modules.

DSPy provides you with the tools to compile high-level code with natural language annotations into the low-level
computations, prompts, or weight updates that align your LM with your program's structure and metrics. If you change
your code or your metrics, you can simply re-compile accordingly.

Given a few tens or hundreds of representative inputs of your task and a metric that can measure the quality of your
system's outputs, you can use a DSPy optimizer. Different optimizers in DSPy work by synthesizing good few-shot
examples for every module, like dspy.BootstrapRS,' proposing and intelligently exploring better natural-language
instructions for every prompt, like dspy.GEPA ¢, dspy.MIPROv2,® and building datasets for your modules and using them
to finetune the LM weights in your system, like dspy.BootstrapFinetune 4 For detailed tutorials on running dspy.GEPA,
please take a look at dspy.GEPA tutorials.

Prompt optimization example via DSPy
Imagine you had a dataset of facility maintenance requests

Input Message:
Subject: Adjusting Bi-Weekly Cleaning Schedule for My Office

Dear ProCare Facility Solutions Support Team,

| hope this message finds you well. My name is Dr. Alex Turner, and | have been utilizing your services for my office space for the past
year. | must say, your team's dedication to maintaining a pristine environment has been commendable and greatly appreciated.

| am reaching out to discuss the scheduling of our regular cleaning services. While | find the logistical challenges of coordinating
these services intellectually stimulating, | believe we could optimize the current schedule to better suit the needs of my team and our
workflow. Specifically, | would like to explore the possibility of adjusting our cleaning schedule to a bi-weekly arrangement,
ideally on Tuesdays and Fridays, to ensure our workspace remains consistently clean without disrupting our research activities.

Gold Answer:

categories: {'routine_maintenance_requests': False, 'customer_feedback_and_complaints': False, 'training_and_support_requests':
False, 'quality_and_safety _concerns': False, 'sustainability_and_environmental_practices': False, 'cleaning_services_scheduling':
True, 'specialized_cleaning_services': False, 'emergency_repair_services': False, 'facility_management_issues': False,
'general_inquiries': False}

sentiment: neutral

urgency: low

Prompt optimization example via DSPy
Starter prompts?

Read the provided message and determine the urgency.

Prompt optimization example via DSPy
Goal: automatically parse each message into the following fields

class FacilitySupportAnalyzerUrgency(dspy.Signature):
Read the provided message and determine the urgency.

message: str = dspy.InputField()
urgency: Literal['low', 'medium', 'high'] = dspy.OutputField()

class FacilitySupportAnalyzerSentiment(dspy.Signature):
Read the provided message and determine the sentiment.

message: str = dspy.InputField()
sentiment: Literal['positive', 'neutral', 'negative'] = dspy.OutputField()

class FacilitySupportAnalyzerCategories(dspy.Signature):
Read the provided message and determine the set of categories applicable to the message.

message: str = dspy.InputField()
categories: List[Literal["emergency_repair_services", "routine_maintenance_requests", "quality_

Prompt optimization example via DSPy
How do we track whether our Al is improving at this task?

Define the metric to evaluate the outputs

The metric evaluates the output of all the three tasks, and returns the aggregate score

def

def

def

score_urgency(gold_urgency, pred_urgency):
Compute score for the urgency module.

score = 1.0 if gold_urgency == pred_urgency else 0.0
return score

score_sentiment(gold_sentiment, pred_sentiment):
Compute score for the sentiment module.

score = 1.0 if gold_sentiment == pred_sentiment else 6.0
return score

score_categories(gold_categories, pred_categories):
Compute score for the categories module.
Uses the same match/mismatch logic as category accuracy in the scaore.

correct = 0
for k, v in gold_categories.items():
if v and kK in pred_categories:
correct += 1
elif not v and k not in pred_categories:
correct += 1
score = correct / len(gold_categories)
return score

Prompt optimization example via DSPy
Provide the model with feedback to optimize its prompt.

Optimizing with GEPA
GEPA is a reflective prompt optimizer. Its strength lies in its ability to examine textual

feedback from the DSPy program's execution and evaluation pipelines. This gives GEPA
greater insight into why the system achieved a particular score, enabling it to introspect

and determine ways to enhance performance.

def feedback urgency(gold urgency, pred_urgency):
Generate feedback for the urgency module.

score = 1.0 if gold_urgency == pred_urgency else 0.0
1f gold urgency == pred_urgency:
feedback = f"You correctly classified the urgency of the message as "{qgold_urgency} . This message is indeed of "{gold_urgency} urgency."

else:
feedback = f"You incorrectly classified the urgency of the message as “{pred_urgency} . The correct urgency is “{gold_urgency} . Think about how you could have reasoned to get the correct urgency label."

return feedback, score

Prompt optimization example via DSPy
Optimizer finds a new prompt

Prompt:
Task: Read the provided message and determine the urgency. <— (This alone was the original prompt)

Context/domain:

- Messages typically relate to facility management and services (e.q., facility operations, space utilization, security, sustainability, HVAC systems,
maintenance, cleaning services) for a provider like ProCare Facility Solutions.

- Senders may be residential or commercial clients and may reference residents, tenants, property operations, or prior support interactions.

Output format:

- Provide exactly two fields, in this order, no extra text or formatting:

reasoning: <1-3 concise sentences explaining the key cues that determine urgency>
urgency: <one of: low | medium | high>

Urgency levels and decision rules:
- HIGH:
- Clear or implied immediate risk to safety/security or major operational impact.
- Explicit urgency signals (e.qg., “Urgent,” “Immediate attention required,” “ASAR” “critical,” “escalating”).
- Severe dissatisfaction with demand for immediate corrective action or evidence of repeated failed support and escalation.

- Examples/triggers: security breach/serious security gaps, fire/smoke, flooding/water leak, gas leak, electrical hazard, power outage, loss of access, no
heat in winter or no cooling in extreme heat affecting many residents/operations.

