
how to code concepts:
sharing context with LLMs

Eagon Meng / 6104 / Fall 2025



today’s lecture

1. what it means to code with LLMs: now and in the future

2. the essence of collaboration: managing Context

3. concept implementations, and their compatibility



exercise

Suppose that AI assistants have become as good as the best human 
software engineer, with unlimited access to the resources of the internet. 
What would coding with AIs mean?

● What current practices and skills would we no longer need to do? 

● What practices and skills would remain, and perhaps even grow in 

relative importance? 



unnecessary current practices?

1. syntax familiarity, specific APIs - maybe even algorithms

2. prompt engineering: is tweaking wording necessary?

3. wireframing: will we need painstaking visual design?



skills and practices that will remain

1. design thinking: understanding the user perspective

2. novelty: extracting human needs from new situations

3. adaptation: tailoring and evolving the existing



thought experiment: one-shotted world 

if all applications were trivially generated with LLMs…

● would they truly have value and impact?

● how would do you set yourself apart?

● what would be your agency?



bridging the gap



where we are today: hallucinations
hallucinate(v.)

"to have illusions," 1650s, from Latin alucinatus (later hallucinatus), past 

participle of alucinari "wander (in the mind), dream; talk unreasonably, ramble 

in thought," probably from Greek alyein, Attic halyein "wander in mind, be at 

a loss, be beside oneself (with grief, joy, perplexity), be distraught," also 

"wander about," which probably is related to alaomai "wander about" [Barnhart, 

Klein]. The Latin ending probably was influenced by vaticinari "to prophecy," 

also "to rave." 

https://www.etymonline.com/word/hallucinate


two separate issues

1. getting it wrong from memory, training, etc.

○ models are finite; also, people do this too

○ making a mistake: confusion

2. getting it wrong from context 

○ lying to your face despite evidence in context

○ denying reality: hallucinations



future: eliminating hallucinations

● as technology advances, we can reasonably expect 

massive reductions in (true) hallucinations 

● but confusion out of a lack of context and available 

information will always remain

● the first is outside your control, the second you can handle



exercise: forms of confusion

what are some examples of confusion with LLMs?

● misremembering a fact

● making a mistake: parameters, syntax, API

● implementing the wrong thing

● losing the plot: getting lost in a sea of instructions 



confusion: susceptible model

which model is prone to some or all of those?

eagon-2.5-amateur



humans and LLMs share failure modes



overload

overwhelming information and complexity

● LLMs: context dilution

● humans: cognitive load theory 



cognitive load theory

● intrinsic: essential 

complexity

● extraneous: 

incidental, distracting 

● germane: distance 

from knowledge



tackling overload through context

● intrinsic: make sure to completely include in the context

● extraneous: compact, reduce as much as possible

● germane: few-shot, model profiling, learn over time



split information

● LLMs: struggle with multi-turn conversations

● humans: split-attention effect



Microsoft paper

39% drop in 

performance going 

from a single-turn 

to multi-turn

solution: compact 

context



fixation

● LLMs: prompt/system bias

● humans: anchoring effect



it all comes down to context



from prompt to context engineering



from prompt to context engineering



context engineering: but how?



context is buried today

● in long, meandering chat logs in rigid web interfaces

● deep in prompts arbitrarily constructed by each tool

● automatically managed with little visibility



constructing context is…

● identifying knowledge, assumptions, requests that matter

● taking separate things apart

● putting them back together in useful ways

● = the essence of design?

○ this is our primary artifact that scales with 

technological advance!



the Context tool



the Context tool

● One document = the entire context

● Markdown-based, no special syntax

● cli tool: ctx prompt file.md 

● Include any files using links with @ sign in the description:

○ [@prompt.md](prompt.md)

○ [@MyConcept.ts](/src/MyConcept.ts)



a4 exercise 0: learning Context



goals of Context
● Legible: see exactly the full context for 

any LLM completion

● Semantically modular: 

○ design/background: shared 

documentation for human/LLMs

● Version controlled: feel free to edit and 

experiment!
tangible context engineering: 

doing this hands-on



implementing concepts



concept implementation: bare necessities

● a single TypeScript class

● must enforce: don’t import other concepts!



concept implementation: actions

● actions: receive and output Records



concept implementation: actions

● proper typing: denote Empty record



concept implementation: queries

● queries: start with underscore, output is array of Records

● why? Commenting._getComment can have > 1 results 



concept implementation: complete



concept implementation: requirements

● a single TypeScript class

● every method is an action or query

○ action: input/output is a record {key: value}

○ query: method name begins with underscore _ 

■ output is array of records Record<k,v>[]



concept implementation: technology

● Deno 

○ simple, all-in-one 

TypeScript runtime

● MongoDB

○ Persistent storage: 

document database



demo: LikertSurvey



why concepts?

● granular: we can build concepts/actions one at a time

● purpose: concepts are more than just a structure (OOP)

○ they inherently link to more knowledge (familiarity)

● semantic: code is no longer just about compilation

○ inline comments are actually valuable!



the code of life: DNA



“non-coding regions”

● exons: processed into proteins

○ software: code artifacts, config files, etc.

● introns: influences expression

○ software: comments, documentation, etc.

○ incredibly significant: expression and understanding



concepts bridge the gap of context

● code is missing half the equation

○ structural patterns alone (OOP, React, etc.) not enough

● how do you organize that understanding?

○ concepts: the essence of software as it affects users

● LLMs can enable us to operate at the level of design

○ using granular building blocks to create Context



takeaways



from today

● beyond today: imagining the future and being prepared for progress

● two distinct problems

○ true hallucinations: ignoring context

○ confusion: poorly formed context

● human + LLM alignment: we are equally confused

● Context: a simple tool for tangible context engineering

● concept design: a theory that bridges the context gap



this class: 
the first step on our journey



thank you!


