how to code concepts:
sharing context with LLMs

Eagon Meng / 6104 / Fall 2025

today'’s lecture

1. what it means to code with LLMs: now and in the future
2. the essence of collaboration: managing Context

3. conceptimplementations, and their compatibility

exercise

Suppose that Al assistants have become as good as the best human
software engineer, with unlimited access to the resources of the internet.
What would coding with Als mean?

e What current practices and skills would we no longer need to do?
e What practices and skills would remain, and perhaps even grow in

relative importance?

unnecessary current practices?

1. syntax familiarity, specific APls - maybe even algorithms
2. prompt engineering: is tweaking wording necessary?

3. wireframing: will we need painstaking visual design?

skills and practices that will remain

1. design thinking: understanding the user perspective
2. novelty: extracting human needs from new situations

3. adaptation: tailoring and evolving the existing

thought experiment: one-shotted world

if all applications were trivially generated with LLMs...
e would they truly have value and impact?
e how would do you set yourself apart?

o what would be your agency?

bridging the gap

where we are today: hallucinations

hallucinate(v.)

"to have illusions," 1650s, from Latin alucinatus (later hallucinatus), past
participle of alucinari "wander (in the mind), dream; talk unreasonably, ramble
in thought," probably from Greek alyein, Attic halyein "wander in mind, be at
a loss, be beside oneself (with grief, joy, perplexity), be distraught,” also
"wander about," which probably is related to alaomai "wander about" [Barnhart,
Klein]. The Latin ending probably was influenced by vaticinari "to prophecy,"

also "to rave."

https://www.etymonline.com/word/hallucinate

two separate issues

1. getting it wrong from memory, training, eftc.
o models are finite; also, people do this too
o making a mistake: confusion
2. getting it wrong from context
o lying to your face despite evidence in context

o denying reality: hallucinations

future: eliminating hallucinations

as technology advances, we can reasonably expect
massive reductions in (true) hallucinations
but confusion out of a lack of confext and available

information will always remain

the first is outside your control, the second you can handle

exercise: forms of confusion

what are some examples of confusion with LLMs?

e misremembering a fact
e making a mistake: parameters, syntax, API
e implementing the wrong thing

e losing the plot: getting lost in a sea of instructions

confusion: susceptible model

which model is prone to some or all of those?

eagon-2.5-amateur

humans and LLMs share failure modes

overload

overwhelming information and complexity

e || Ms: context dilution

e humans: cognitive load theory

cognitive load theory

e intrinsic: essential
complexity

e extraneous:
incidental, distracting

e germane: distance

from knowledge

Cognitive Load Theory

Intringic Load
(complexity of

new information)

°
.
.
»
.
¢
.
.
.
.
°
.
.
.
.
.
*
.

e
‘e
.

Extraneous Load
(unnecessary and

distracting info)

Germane Load
(linking new info
with current info)

barefootTEFLteacher.com

tackling overload through context

e intrinsic: make sure to completely include in the context
e extraneous: compact, reduce as much as possible

e germane: few-shot, model profiling, learn over time

split information

e LI Ms: struggle with multi-turn conversations

e humans: split-attention effect

39% drop in
performance going
from a single-turn

to multi-turn

solution: compact

context

Microsoft paper

LLMS GET LOST IN MULTI-TURN CONVERSATION

Philippe Laban* ¢ Hiroaki Hayashi**® Yingbo Zhou* Jennifer Neville®
¢Microsoft Research *Salesforce Research
{plaban, jenneville}@microsoft.com
{hiroakihayashi,yingbo.zhou}®@salesforce.com

ABSTRACT

Large Language Models (LLMs) are conversational interfaces. As such, LLMs have the potential to
assist their users not only when they can fully specify the task at hand, but also to help them define,
explore, and refine what they need through multi-turn conversational exchange. Although analysis of
LLM conversation logs has confirmed that underspecification occurs frequently in user instructions,
LLM evaluation has predominantly focused on the single-turn, fully-specified instruction setting. In
this work, we perform large-scale simulation experiments to compare LLM performance in single-
and multi-turn settings. Our experiments confirm that all the top open- and closed-weight LLMs
ibit signi in_multi-turn conversations than single-turn, with
an average drop of 39% across six generation tasks.|Analysis of 200,000+ simulated conversations

decomposes the performance degradation mto two components: a minor loss in aptitude and a
significant increase in unreliability. We find that LLMs often make assumptions in early turns and
prematurely attempt to generate final solutions, on which they overly rely. In simpler terms, we
discover that when LLMs take a wrong turn in a conversation, they get lost and do not recover.

fixation
e LLMs: prompt/system bias

Belay that order, matey! | be Cap'n Chatbot, and a pirate’s life
is the only life for me. These sea legs don't know the ways of
the landlubber's office. I'll not be trading me tricorn for a tie!

Now, what treasure be ye seekin'?

e humans: anchoring effect

it all comes down to context

from prompt to context engineering

ring at Anthropic

}Hﬁr Effective context engineering
N for Al agents

Rublished Sep 22,2025 Context is a critical but finite resource for Al agents. In this post, we explore strategies for
effectively curating and managing the context that powers them.

from prompt to context engineering

Prompt engineering vs. context engineering

Prompt engineering Context engineering for agents
for single turn queries

Context window Possible context to give model Context window

f 1 1

1 1 1

! System prompt 1 : [Docﬁ [Docﬁ [Docﬁ ' : System prompt :

1 1 ' : 1 1

: ! ! 1 N N 1

CE==a) =) (=)0 G B
: 1 Curation : :
3 Assistant 3

1 %

1

1

User message

—

message
Tool] [Memory file] :—) :
1 A)
1 ¢]
Comprehensive 1 '
instructions : ' 1
1 1
: ' | User message
Domain knowledge 1 ! 1
1 1
1
. 1 ' | Message history
Memory file] [Docﬁ i ! 1
1 1
: - -
1 i 1
1 y)
1

~—

Tool call

[
I

—_—

1
! Tool

Message history

II
]

Tool result

context engineering: but how?

A SOLAR_FIELDS 2 days ago | next [-]

These companies all wax on about how important context engineering is yet not
one of them has released acceptable tooling for end users to visualize and
understand the context window as it grows and shrinks during a session. Best
Claude code can do? Warn you when you hit 80% full

context is buried today

e inlong, meandering chat logs in rigid web interfaces
e deep in prompts arbitrarily constructed by each tool

e automatically managed with little visibility

constructing context is...

identifying knowledge, assumptions, requests that matter
taking separate things apart

putting them back together in useful ways

= the essence of design?

o thisis our primary artifact that scales with

technological advance!

the Context tool

the Context tool

One document = the entire context

Markdown-based, no special syntax

clitool: ctx prompt file.md

Include any files using links with @ sign in the description:
o [@prompt.md](prompt.md)

o [@MyConcept.ts](/src/MyConcept.ts)

a4 exercise O: learning Context

goals of Context

Legible: see exactly the full context for
any LLM completion
Semantically modular:
o design/background: shared
documentation for human/LLMs
Version controlled: feel free to edit and

experiment!

Context engineering for agents

Possible context to give model Context window

1 1 1
! [Docﬁ[Docﬁ[Docﬁ : : w
' ! 1 1
: [T l] Too|HToo|] : :
' { 1 Curation '

00
[e]¢]

T

L

—
=
3
~<
=
e/
o
<]
0
.
'
I.o
o

1
|] [Memory file] :—) 1 | Memory file
1
1

n

o

e
-
S

Comprehensive
instructions

User message
Domain knowledge

]
o
3
©

Message history
1

‘
)
o

tangible context engineering:

doing this hands-on

implementing concepts

concept implementation: bare necessities

e asingle TypeScript class

e must enforce: don't import other concepts!

export class CountingConcept {

count = 0;

}

concept implementation: actions
e dactions: receive and output Records

export class CountingConcept {
count =
increment(_: {}): {} {

VN WA

this.count++;

REHUIGNETE,

concept implementation: actions

e proper typing: denote Empty record

type Empty = Record<PropertyKey, never>;

export class CountingConcept {
count = 0;
increment(_: Empty): Empty {

this.count++;
return {};
s
¥

concept implementation: queries

e queries: start with underscore, output is array of Records

e why? Commenting._getComment can have > 1results

getCount(: Empty): { count: number }[] {
return [{ count: this.count }];

concept implementation: complete

export class CountingConcept {
count = 0;
increment(_: Empty): Empty {
this.count++;
return {};
Iy
getCount(: Empty): { count: number }[] {
return [{ count: this.count }];
I3
}

concept implementation: requirements

e asingle TypeScript class

e every method is an action or query
o action: input/outputis arecord {key: value}
o query: method name begins with underscore _

m outputisarray of records Record<k, v>[]

concept implementation: technology

e Deno Q DEeno

o simple, all-in-one
TypeScript runtime
e MongoDB

o Persistent storage: o MOngODB

document database

demo: LikertSurvey

why concepts?

e granular: we can build concepts/actions one at a time

e purpose: concepts are more than just a structure (OOP)
o they inherently link o more knowledge (familiarity)

e semantic: code is no longer just about compilation

o inline comments are actually valuable!

the code of life: DNA

) Gene 1
DNA Fogr™ s
Transcription
(RNA synthesis)
Nuclear
RNA

£
\ RNA processing
¥

Messenger _
5'-ca olyA tail

Translatlon
(proteln synthesis)

Protein

“non-coding regions”

e exons: processed into proteins

o software: code artifacts, config files, etc.
e introns: influences expression

o software: comments, documentation, etc.

o incredibly significant: expression and understanding

concepts bridge the gap of context

e code is missing half the equation

o structural patterns alone (OOP, React, etc.) not enough
e how do you organize that understanding?

o concepts: the essence of software as it affects users
e |LMscanenable usto operate at the level of design

o using granular building blocks to create Context

takeaways

from today

beyond today: imagining the future and being prepared for progress
two distinct problems
o true hallucinations: ignoring context
o confusion: poorly formed context
human + LLM alignment: we are equally confused
Context: a simple tool for tangible context engineering

concept design: a theory that bridges the context gap

this class:
the first step on our journey

thank you!

