
modularity
in design

Daniel Jackson

6.104 · Software Design · MIT · Fall 2025

your goals for today’s class

know what goes wrong when modularity is poor
confuses users, restricts & breaks functionality, prevents reuse, …

grasp idea of separation of concerns
organizing functions around concerns, not objects

learn from examples of better modularity
how aspects of an object are split across concepts

have the specificity principle in mind
one purpose :: one concept

de/composition:
design is breaking up

& putting together

teapot

handle

lid

spout

body

pouringholding

brewing

keeping hot

decomposing into parts with purposes

how does decomposition help?

reuse
build on experience

within & across products

usability
identify familiar parts
learn what you need

focus
one part at a time
localize changes

incrementality
division of labor
steady progress

what do you think?

the two watchmakers

incrementality
division of labor
steady progress

Herb Simon, The Architecture of Complexity (1962)

cartoon by ChatGPT

reuse
build on experience

within & across products

how unique is it?

no other app is the same as HackerNews

HackerNews = Post + Comment + Upvote + Karma + …

but its concepts are mostly identical to the concepts in other apps

Dijkstra: separation of concerns

Edsger Dijkstra, On the role of scientific thought (EWD447, 1974)

focus
one part at a time
localize changes

example:
separating concerns

for a modular design

state
a set of User with
 a username String
 a password String
 an email String
 a phone String
 a displayName String
 a profile Image

a bad concept with poor modularity

concept UserAccount

purpose ????
not reusable

a dumping ground for all user-related function
more & more app-specific over time

not focused
what if user wants a different email for messages?

how & where to make this change?

not incremental
modules like this often >10kloc

can it be tested before it’s all done?

is this good modularity?

state
a set of User with
 a username String
 a password String
 an email String
 a phone String
 a displayName String
 a profile Image

 a username String
 a password String
 an email String
 a phone String
 a displayName String
 a profile Image

separating concerns

concept UserAccount

purpose ????

concept PasswordAuth [User]

purpose authenticate users

state
a set of User with
 a password String

concept Notification [User]

purpose notify users

state
a set of User with
 an email String
 a phone String

concept Profile [User]

purpose share user info

state
a set of User with
 a displayName String
 a profile Image

concept UserNaming

purpose name users

state
a set of User with
 a username String

concept PasswordAuth [User]

purpose
authenticate users with passwords

principle
after setting a password for a user,
the user can authenticate with that
password

state
 a set of User with

 a password String

actions
 setPassword (u: User, p: String)
 authenticate (u: User, p: String)

concept UserNaming

purpose
let users refer to each other by
name

principle
after registering with a name,
the user can be found by looking up
by that name

state
 a set of User with
 a username String

actions
 register (n: String): (u: User)

concept UserProfile [User]

purpose
let users share personal info

principle
after setting a name and image for a
user, other users can see them

state
 a set of User with
 a displayname String
 a profile Image

actions
 setName (u: User, n: String)
 setImage (u: User, i: Image)

when
 UserNaming.register (name): (user)
 Request.createAccount (password)
then
 PasswordAuth.setPassword (user, password)

when
 Request.createAccount (name)
then
 UserNaming.register (name)

a more modular design

factoring the data model

User

String

displaynamepassword

StringString

username

Image

profile

a set of User with
 a username String
 a password String
 a displayname String
 a profile Image

User

String

username password

String

User

String

displayname

Image

profile
User

a set of User with
 a username String

a set of User with
 a password String

a set of User with
 a displayname String
 a profile Image

User = {u0, u1}
username = {(u0, n0), (u1, n1)}
password = {(u0, p0), (u1, p1)}

P1 C1

P2 C2

specificity
purposes:concepts are 1:1

P1 C1

C2

redundancy
>1 concept per purpose

P1 C1

P2

overloading
>1 purpose per concept

concept design principles

Mitchell and Webb on “unity of purpose”

https://www.youtube.com/watch?v=vlN17gMhnEk

https://www.youtube.com/watch?v=vlN17gMhnEk

example:
how non-modularity

confuses users

tagging in facebook

what does tagging do?

so who sees a post you’re tagged in?

what does “choose to add” mean?

your turn

how would you fix the tagging problem?

goals might include
preserving modularity
not violating users’ privacy
giving users flexibility

a more modular design

concept Friending [User, Item]

purpose
let users limit access to their items

principle
after a user adds another friend as a
user, and then publishes an item,
the friend can access it

state
 a set of User with

 a friends set of User
 a published set of Item

actions
 addFriend (u: User, friend: User)
 publish (u: User, i: Item)
 access (u: User, i: Item)
 requires item i is published by a
 user who is a friend of the user u

concept Tagging [Image, User]

purpose
share who is in an image

principle
after a user tags another user in an
image, viewers can see the tag and
identify the user

state
 a set of Image with
 a set of Tag
 a set of Tag with
 a tagging User
 a tagged User

actions
 tag (by: User, i: Image,
 who: User): Tag

when
 Tagging.tag (by, image, who): (tag)
then
 Friending.publish (who, image)

an unreasonable sync:
acting on the user’s behalf

when
 Tagging.tag (by, image, who): (tag)
then
 Friending.publish (by, tag)

a reasonable sync

example:
how non-modularity
restricts functionality

a lovely camera fuji x100

complex menu system: image quality setting

aspect ratio

image size setting

non-standard ratio + raw?

problem #1: no non-standard ratio unless also save JPG!

raw image showing non-destructive aspect ratio crop

problem #2: very few ratio options

how would you
fix this problem?

a more modular design

concept AspectRatio

purpose
set aspect ratio for images

principle
after setting the aspect ratio, photos
taken will use that ratio (by cropping for
JPEGs and non-destructive framing for
RAWs)

state
 a set of Ratio with

 a longSide Number
 a shortSide Number
 an element RatioSetting with

 a Ratio
actions
 addRatio (long: Number, short: Number)
 setRatio (ratio: Ratio)

concept ImageQuality

purpose
set quality and format for images

principle
after setting the quality and format, photos
taken will use that setting

state
 an element QualitySetting with
 a resolution of SMALL or MED or LARGE
 a compression of SUPER or FINE or NORMAL
 a format of RAW or JPEG or BOTH
actions
 setCompression (…)
 setFormat (…)
 setResolution (…)

example:
how the wrong modularity

can break functionality

from email addressSMTP server

dnj@csail.mit.eduselect email address

outgoing.csail.mit.eduselect SMTP server

dnj@mit.eduselect email address

select SMTP server smtp.mit.edu

send message outgoing.csail.mit.edu sends message from dnj@csail.mit.edu

send message smtp.mit.edu sends message from dnj@mit.edu

receive message imap.csail.mit.edu gets message sent to dnj@csail.mit.edu

reply to message dnj@csail.mit.edu

send message smtp.mit.edu sends message from dnj@csail.mit.edu

marked as spam by recipient because
IP address of smtp.mit.edu not included in SPF record for csail.mit.edu

http://outgoing.csail.mit.edu
http://outgoing.csail.mit.edu
http://outgoing.csail.mit.edu
mailto:dnj@csail.mit.edu
http://imap.csail.mit.edu
mailto:dnj@csail.mit.edu
http://smtp.mit.edu

a design with improved modularity

concept EmailSending [Server]

state
 a set of Server with

 an emailAddress String
 a displayName String

actions
 configure (…, s: Server)

concept EmailAccount [Server]

state
 a set of Account with
 a displayName String
 an emailAddress String
 an incoming Server
 an outgoing Server

actions
 new (…): Account
 setOutgoing (a: Account, s: Server)

current design: email address
is independent of choice of server

concept EmailAccount [Server]

state
 a set of Account with
 an incoming Server
 an outgoing Server

actions
 new (…): Account
 setOutgoing (a: Account, s: Server)

better design: email address
is associated with choice of server

concept ServerAuthentication

state
 a set of Server with

 a domain String
 a username String
 a password String

actions
 register (…): Server
 connect (s: Server)
 …

can still factor out
server authentication settings

example:
how non-modularity

leads to accidents

HCI Seminar

Daniel’s Calendar

seminar
announced as

email to listserv
with attached
calendar event

event installed
automatically in
user’s calendar

user deletes event
from calendar

cancellation email
automatically sent
to other invitees

a long time problem in iCal too
how to delete spam calendar events?

resolution to design problem
make sync optional

a more modular design

concept CalendarEvent [User]

state
 a set of Calendar with

 a name String
 an events set of Event

 a set of Event with
 a date Date
 a title String

actions
 newCalendar (n: String): (Calendar)
 newEvent (c: Calendar, d: Date, t: String)
 deleteCalendar (c: Calendar)
 deleteEvent (e: Event)

concept Inviting [User, Event]

state
 a set of Event with
 a host User
 an invited set of User
 an accepted set of User
 a declined set of User
 a canceled Flag

actions
 invite (host: User, u: User, e: Event)
 accept (u: User, e: Event)
 decline (u: User, e: Event)
 cancel (e: Event)

delete and cancel are now decoupled

modularity
3 criteria

defining modularity

separation
a single module doesn’t

conflate unrelated concerns

separated: not conflated

conflated

completeness
a single module contains

all of a concern’s behavior

complete: not fragmented

fragmented

independence
one module doesn’t

rely on another

independent

dependent
tagging/access

quality/ratio
invitation/event

takeaways

key ideas from this lecture

modularity matters
not just localizing change: user flexibility too

separation of concerns
not just grouping functions around objects

so far all about separation/decoupling
next time we’ll talk about completeness

