
designing
behavior

Daniel Jackson

6.104 · Software Design · MIT · Fall 2025

your goals for today’s class

know how to model behavior
states (aka data model) and actions
a key computer science skill!

understand trace view
behavior as history of actions

know how to use invariants in design
integrity constrains that define good states

on details

The details are not details. They make the design. Charles Eames

what kind of behavioral details?

details to include
steps the user takes

system responses to the user
data the user gives & gets

details to exclude
coding & algorithmic details
distribution, replication, etc

internal steps

buy a book
book gets delivered
address, arrival estimate

order id has checksum
orders on separate server
request to warehouse

also UI independent
layout & styling of pages

navigation between pages
“micro-steps”

for online bookstore, eg

UI-dependent questions: important but not conceptual

should available
slots be red?

is this helpful?

how many steps
to enter data?

why postpone UI-dependent details?

they’re a lot of work
we need to tend to

more basic things first

they can be a distraction
color of slots before we’ve

decided that we have slots?

want to judge a UI
projects concepts well?

then need pure concepts

what this doesn’t mean
can’t sketch UI ideas

during concept design
often helpful to concretize

shared understanding
between UX & engineering

capturing the overlap

which steps are concept actions?

a full example
a reservation concept

how to design a concept

pick a name
specific to function
but for general use

describe purpose
why design or use it?
value to stakeholders

tell story
a simple scenario
of how it’s used

list actions
by user or system
key steps, not UI

specify state
what’s remembered
enough for actions

pick a name
specific to function
but general enough

RestaurantReservation

OpenTableReservation

Restaurant

picking a name

Reservation

describing a purpose

describe purpose
why design or use it?
value to stakeholders

reducing wait time for tables

maximizing use of available tables

making money for reservation service

tracking occupancy patterns

telling the story

tell story
a simple scenario
of how it’s used

the restaurant makes
slots available at various

times; a diner reserves for
a particular time, and

then can be assured of
being seated at that time

listing actions

list actions
by user or system
key steps, not UI

select date
select time

click reserve

no! these are
all low-level
UI interactions

login
search for restaurant

review restaurant

no! these belong
to other concepts

createSlot

reserve

seat

cancel

noShow

deleteSlot

what other actions
might be needed?

the restaurant makes
slots available at various

times; a diner reserves for
a particular slot, and then
can be assured of being

seated at that time

let’s return to our
story for hints:

defining action arguments

createSlot

reserve

seat

createSlot (t: Time)

reserve (u: User, t: Time): Reservation

seat (r: Reservation)

cancel

noShow

deleteSlot

cancel (r: Reservation)

noShow (r: Reservation)

deleteSlot (s: Slot)

devising the state

specify state
what’s remembered
enough for actions

a set of Slots with
 a Time
a set of Reservations with
 a User
 a Slot

reserve (u: User, t: Time): Reservation
requires
 some slot at time t not yet reserved
effect
 creates & returns a fresh reservation
 associates it with user u and the slot

defining the actions

createSlot (t: Time)
effect
 creates a fresh slot
 associates it with time t

seat (r: Reservation)
requires
 r is a reservation for about now
effect
 // oops!

actions

mark r as seated

createSlot (t: Time)

reserve (u: User, t: Time): Reservation

seat (r: Reservation)

state

“precondition”
 what’s true of state before

“postcondition”
relates state after to before

 a seated Flag

a set of Slots with
 a Time
a set of Reservations with
 a User
 a Slot

reserve (u: User, t: Time): Reservation
requires some slot at time t not yet reserved
effect creates & returns a fresh reservation
 associates it with user u and the slot

seat (r: Reservation)
requires r is a reservation for about now
effect mark r as seated

createSlot (t: Time)
effect creates a fresh slot
 associates it with time t

actions

s0 July 4, 2025 at 7:00pm

slot time

res user slot seated

createSlot (July 4, 2025 at 7pm) reserve (u1, July 4… 7pm): r0

r0 u1 s0 FALSE
res user slot seated

s0 July 4, 2025 at 7:00pm

slot time

r0 u1 s0 TRUE
res user slot seated

s0 July 4, 2025 at 7:00pm
slot time

res user slot seated

initially

slot time

seat (r0)

state
a set of Slots with
 a Time
a set of Reservations with
 a User
 a Slot
 a seated Flag

putting it all together

actions
 createSlot (t: Time)
 effect creates a fresh slot & associates with time t
 reserve (u: User, t: Time): Reservation
 requires some slot at time t not yet reserved
 effect creates & returns a fresh reservation
 associates it with user u and the slot
 seat (r: Reservation)
 requires r is a reservation for about now
 effect mark r as seated

principle the restaurant makes slots
available at various times; a diner
reserves for a particular time, and
then can be assured of being seated
at that time

concept RestaurantReservation

purpose reducing wait time for tables

state
a set of Slots with
 a Time
a set of Reservations with
 a User
 a Slot
 a seated Flag

your turn:
state & actions

actions
 createSlot (t: Time)
 reserve (u: User, t: Time): Reservation

concept RestaurantReservation [User]

state
a set of Slots with
 a Time
a set of Reservations with
 a User
 a Slot

extend the concept in these ways
add an action for canceling
add an action for deleting a slot
support multiple restaurants
include party size

https://yellkey.com/movement

a possible solution

actions
 createSlot (r: Restaurant, t: Time, max, min: Number)
 deleteSlot (s: Slot)
 requires no reservations for this slot
 effects remove s from set of slots
 reserve (u: User, t: Time, party: Number, r: Restaurant): Reservation
 requires some unreserved slot for r at t with min <= party <= max
 effects add new reservation for slot with user and party size
 cancel (r: Reservation)
 requires r is an existing reservation
 effects remove r from reservations

concept RestaurantReservation [User, Restaurant]

state
a set of Slots with
 a Restaurant
 a Time
 a max Number
 a min Number
a set of Reservations with
 a User
 a Slot
 a partySize Number

traces
action histories

createSlot (July 4, 2025 at 7pm)

seat (r1)

reserve (u1, July 4… 7pm): r0

a trace of the reservation system

register (“Daniel”, “foo”): u1

cancel (r0)

reserve (u2, July 4… 7pm): r1

register (“Mitchell”, “bar”): u2

login (“Daniel”, “foo”): u1

notify (u1, “reserved”)

notify (u1, “canceled”)

login (“Mitchell”, “bar”): u2

concept
SessionAuth

concept
Notification

concept
RestaurantReservation

createSlot (July 4, 2025 at 7pm)

seat (r1)

reserve (u1, July 4… 7pm): r0

projecting system trace into concept traces

register (“Daniel”, “foo”): u1

cancel (r0)

reserve (u2, July 4… 7pm): r1

register (“Mitchell”, “bar”): u2

login (“Daniel”, “foo”): u1

current user is u1

setEmail (u1, “dnj@mit.edu")

notify (u1, “reserved”)

notify (u1, “canceled”)

login (“Mitchell”, “bar”): u2

current user is u1

mailto:dnj@mit.edu

state invariants
aka integrity constraints

designing invariants for concepts

state
a set of Users with
 a username String
 a password String

concept PasswordSession

state
a set of Slots with
 a Time
a set of Reservations with
 a User
 a Slot
 a Restaurant

concept RestaurantReservation

at most one user with a given username at most one reservation for a given slot

at most one reservation for a given user at a given time??

invariants?

what goes wrong if violated?

classifying states

all states

good states

a safe design

all states

good states

an unsafe design

all states

good states

inductive reasoning strategy

all states

good states

what we want to avoid
reasoning about all scenarios

complicated and tedious!

a better approach
reasoning about steps taken by actions
(1) check that the initial state is good

(2) and no action goes from a good to a bad state

applying inductive reasoning to reservation concept

concept RestaurantReservation

at most one reservation for a given slot

the invariant we want to check

check that the invariant holds in initial state

initially, no reservations

check each action preserves invariant

only the reserve action modifies set of reservations

reserve action ensures slot is not reserved

✔︎

✔︎

actions
 createSlot (time: Time)
 effects creates a fresh slot for the time
 reserve (user: User, time: Time): Reservation
 requires some slot at this time not yet reserved
 effects creates & returns a fresh reservation
 associates it with user and slot

state
a set of Slots with
 a Time
a set of Reservations with
 a User
 a Slot

states & data models
getting more precise

simplifying the state

state
a set of Slots with
 a Time
a set of Reservations with
 a User
 a Slot

concept RestaurantReservation

r0 u1 s0
res user slot

s0 July 4, 2025 at 7:00pm

slot time

before, we represented like this here’s a simpler, more atomized representation

s0

Slot
r0

Reservation

s0 Ju..
time

r0 u1
user

r0 s0
slot

these are SETS

these are BINARY RELATIONS

u1

User

a diagrammatic form

s0

Slot
r0

Reservation

s0 Ju..
time

r0 u1
user

r0 s0
slot

these are SETS

these are BINARY RELATIONS

u1

User

DateTime

Slot

time

Reservation

slot

User

user

why kind of set is DateTime?
a set of built-in values
what are the values of Slot, eg?
they’re identifiers

concept does not expose composite objects!

state
a set of Slots with
 a Time
a set of Reservations with
 a User
 a Slot

concept RestaurantReservation

actions
 addSlot (s: Slot) // BE CAREFUL!
 effect adds the slot s to the set of slots with its time

s0 July 4, 2025 at 7:00pm

slot time

A relational view of the state

slots: []
reservations: []

time:

day:
month:

year:

4

7

2025

Slot

Time

An object-oriented view of the state

summary

states can be represented as just sets & binary relations
never need tables with more than two columns

this allows a nice diagrammatic representation
this is the “entity relationship diagram”

no composite objects are visible
a slot is just an identifier associated with a time etc
not a composite object (but could be implemented as one)

why this model helps
succinct and precise, brings clarity during design
easily translated into code (and database schemas etc)

your turn:
a design challenge

how to reduce no-shows

what’s a no-show?
diner makes reservation, doesn’t cancel but doesn’t show up

how might you design to reduce no-shows?
consider concept design interventions

which concepts might you add?
and how would their actions be sync’d with reservation actions?

some possible solutions

modifying reservation concept
add invariant: at most one reservation at a given time
require confirmations of reservations

adding a payment concept
require deposit for make a reservation

adding a reminder concept
remind diners when they have an upcoming reservation

adding a karma concept
track no-shows and ban repeat offenders
share no-show data with restaurants

heuristics
for states & actions

do you have enough actions?

is purpose/value delivered?
note that have info in state may be enough

have you covered the whole life cycle?
is there an initial setup? a winding down?

are there ways to undo previous actions?
or to compensate if erroneous?

do all nouns have create, update, delete?
for associated state?

concept Reservation
actions reserve…

seat action?

create slots?

unseat?
cancel reservation?

change reservation?

do you have a rich enough state?

can you support all your actions?
determine if allowed, and generate results

should you track history?
remember completions, deletions, undos?

what info about action occurrence?
maybe also who did it? when?

concept Reservation
actions createSlot, reserve, cancel,
seat, unseat, no-show, …

table sizes?

retain after seat?

by vs. for?
time of reservation?

takeaways

details matter
big impact on flexibility & complexity

states & data models
a simpler relational view, not composite objects

behavior = traces
actions & visible states; can project onto individual concepts

