
introduction to
concept design

Daniel Jackson

6.104 · Software Design · MIT · Fall 2025

your goals for today’s class

get the gist of what concepts are about
what they’re for, what they are

understand key elements of a concept
purpose, operational principle, states & actions
more on this on Wednesday

understand how concepts are composed
externalizing connections with syncs

appreciate how subtle concept ideas impact innovation
especially the role of killer concepts

a language
for design

When you go to design a house you talk to an
architect first, not an engineer. Why is this?

Because the criteria for what makes a good
building fall outside the domain of engineering.

Similarly, in computer programs, the selection
of the various components must be driven by

the conditions of use.

How is this to be done? By software designers.

Mitchell Kapor, A Software Design Manifesto (1996)

who are the software designers?

UX architects

product managers

information architects

UX designers

software engineers

business analysts

product
manager

UX
designer

software
engineer

“the product triad”

will AI change these roles?

what do designers need?

modularity patterns design principles

closures
abstract types

objects & classes
algebraic datatypes

microservices

hashtable
factory

publish/subscribe
map/filter

client-server

layering
decoupling

immutability
rep independence
Liskov substitution

for
engineering

for
design

concepts
syncs

Upvoting
Karma
Posting

Commenting
Bookmarking

completeness
separation
specificity
genericity

what’s a concept?
key elements

design by concept

authentication

commenting

favoritingupvoting

karma

posting

so where’s the innovation?

hacker news is popular
> 10m page views/day
so evidently it was worth building

where’s the innovation?
“combinational creativity” [Boden]
familiar elements combined in new ways

two kinds of innovation
a few tiny concept refinements: post = title + link
concept syncs: no downvote until your own posts upvoted

a sample concept: Upvoting

what’s a concept?

a coherent unit of behavior

user-facing (a behavioral pattern)

a nano service (a backend API)

reusable & familiar

designed, coded and explained independently

concept Upvoting [User, Item]

state
 a set of Votes with
 a voter User
 a target Item

actions
 upvote (user: User, item: Item)
 unvote (user: User, item: Item)

purpose rank items by popularity

principle after a series of
upvotes, can rank items by the
number of votes they received

defining a concept

new to concept design

standard computer science

concept Upvoting

purpose rank items by popularity

principle after a series of
upvotes, can rank items by the
number of votes they received

concept Reacting

purpose send reactions to author

principle when user selects
reaction, it’s shown to the author
(often in aggregated form)

concept Recommending

purpose use prior likes to recommend

principle user’s likes lead to ranking
of kinds of items, determining which
items are recommended

similar UIs, different concepts

concept Upvoting [User, Item]

state
 a set of Votes with
 a voter User
 a target Item

actions
 upvote (user: User, item: Item)
 unvote (user: User, item: Item)

purpose rank items by popularity

principle after a series of
upvotes, can rank items by the
number of votes they received

concept name

name is very important!
becomes a shorthand for a design pattern
“let’s use upvoting on comments”

type parameters
polymorphic types passed in and out of actions
concept assumes nothing about these
just opaque references to objects
so any kind of user, any kind of item

what are examples of items in familiar apps?

what might users correspond to?

concept Upvoting [User, Item]

state
 a set of Votes with
 a voter User
 a target Item

actions
 upvote (user: User, item: Item)
 unvote (user: User, item: Item)

purpose rank items by popularity

principle after a series of
upvotes, can rank items by the
number of votes they received

purpose

purpose answers why
why use this concept? why invent this concept?
paradoxically, often the hardest part
but figuring this out can bring the most value

different purposes for different stakeholders
but there is usually a primary purpose

conflicting purposes
when more than one purpose, often conflict

what’s the purpose for the platform?

concept Upvoting [User, Item]

state
 a set of Votes with
 a voter User
 a target Item

actions
 upvote (user: User, item: Item)
 unvote (user: User, item: Item)

purpose rank items by popularity

principle after a series of
upvotes, can rank items by the
number of votes they received

operational principle

an archetypal scenario
a story about how the concept is used
the typical case, not an edge case
must illustrate how purpose is achieved

a bad operational principles
“after an upvote of an item, its count goes up”

what’s wrong with the bad principle?

concept Upvoting [User, Item]

state
 a set of Votes with
 a voter User
 a target Item

actions
 upvote (user: User, item: Item)
 unvote (user: User, item: Item)

purpose rank items by popularity

principle after a series of
upvotes, can rank items by the
number of votes they received

actions

actions are what users do
also system responses (eg, notify user)

user interface independent
not “click button” or “select item”
typically, one action for many micro steps in UI

actions aren’t requests, so don’t fail
if upvote would fail, action doesn’t happen

actions implemented as functions
an API to the concept (along with state)

what other actions might upvoting have?

concept Upvoting [User, Item]

state
 a set of Votes with
 a voter User
 a target Item

actions
 upvote (user: User, item: Item)
 unvote (user: User, item: Item)

purpose rank items by popularity

principle after a series of
upvotes, can rank items by the
number of votes they received

state

state is what the concept remembers
to determine whether actions are allowed
to generate outputs to actions
to show effect of actions to users

no observer actions needed
state is abstract, so no rep exposure worry
typically many kinds of queries
so don’t want to specify each one
just assume state is visible and queryable

state implemented with persistent storage
eg, a relational or collection database
think of state as part of system’s data schema

why does state store identities of voters?

concept Upvoting [User, Item]

state
 a set of Votes with
 a voter User
 a target Item

actions
 upvote (user: User, item: Item)
 unvote (user: User, item: Item)

purpose rank items by popularity

principle after a series of
upvotes, can rank items by the
number of votes they received

what the state looks like: representation independence

votes: [, ,]

voter:
target:

name: “Alice”

content: “…”
voter:

target:

voter:
target: name: “Bob”

content: “…”

object-oriented

1 7 9
2 7 11
3 5 9

id voter target

relational database

_id: 1
voter: 7

target: 9

_id: 2
voter: 7

target: 11

_id: 3
voter: 5

target: 9

document database

concept Upvoting [User, Item]

state
 a set of Votes with
 a voter User
 a target Item

actions
 upvote (user: User, item: Item)
 requires no vote by user for item
 effect add vote by user for item

purpose rank items by popularity

principle after a series of
upvotes, can rank items by the
number of votes they received

action specifications

can specify each action
standard pre/post specification
just like you’ve seen in 6.102

action specs determine behaviors
by induction, starting with initial states
by default, sets start empty

invariants (aka integrity constraints)
established at start and then preserved

what’s an invariant of the state for upvoting?

related concepts
Rating, Recommending, Reacting, …

design variants
downvote as unvote

use age in ranking
weigh downvotes more
various identity tactics

freezing old posts known issues
high votes can promote old content

feedback favors early upvotes
upvoting encourages echo chamber

preventing double votes
typical uses

social media posts
comments on articles

Q&A responses

often used with
Karma, Authentication …

concept: Upvoting

concepts as carriers of design knowledge

what are some known issues?

synchronization
composing concepts

without coupling

suppose I want this behavior:
you can’t downvote an item

until you’ve received
an upvote on your own post

concept Upvoting

actions
upvote (user, item)
downvote (user, item)
unvote (user, item)

purpose privilege good users

concept Karma

state
a set of Users with
 a karma Number

actions
reward (user, reward)

define a new concept!
a hint: not just used by Upvote

purpose rank items by popularity purpose share content

concept Posting

state
a set of Posts with
 a body String
 an author User

actions
create (user, body): post
delete (post)
edit (post, body)

could just modify Upvote
why is this bad?

adding application-specific functionality

concept Posting

state
a set of Posts with
 a body String
 an author User

actions
reward (user, reward)

concept Upvoting

concept Karma

a first synchronization

actions
create (user, body): post
delete (post)
edit (post, body)

when Upvoting.upvote (post)
where Posting: author of post is user
then Karma.reward (user, 10)

state
a set of Users with
 a karma Number

actions
upvote (user, item)
downvote (user, item)
unvote (user, item)

concept Posting

state
a set of Posts with
 a body String
 an author User

concept Requesting

actions
upvote (user, item)
downvote (user, item)
…
edit (post, body)

actions
reward (user, reward)

concept Upvoting

concept Karma

a second synchronization

actions
create (user, body): post
delete (post)
edit (post, body)

state
a set of Users with
 a karma Number

actions
upvote (user, item)
downvote (user, item)
unvote (user, item) when Requesting.downvote (user, post)

where Karma: user has karma >= 20
then Upvoting.downvote (user, post)

concept Posting

state
a set of Posts with
 a body String
 an author User

concept Requesting

actions
upvote (user, item)
downvote (user, item)
…
edit (post, body)

actions
reward (user, reward)

concept Upvoting

concept Karma

controlling downvoting in two syncs

actions
create (user, body): post
delete (post)
edit (post, body)

state
a set of Users with
 a karma Number

actions
upvote (user, item)
downvote (user, item)
unvote (user, item) when Request.downvote (user, post)

where Karma: user has karma >= 20
then Upvoting.downvote (user, post)

when Upvoting.upvote (post)
where Posting: author of post is user
then Karma.reward (user, 10)

why not upvote (user, post) in first sync?

concept Upvoting concept Karma concept Postingconcept Requesting

reward (Alice, 10)

downvote (Alice, p2) Alice has >= 20 karma

create (Alice, …) : p1

author of p1 is Alice

upvote (Carol, p1) reward (Alice, 10) author of p1 is Alice

create (Bob, …) : p2

synchronization viewed over scenarios (traces)

downvote (Alice, p2)

upvote (Bob, p1)

not a call
concepts are
decoupled

each concept
executes a

valid scenario

concepts stay
largely

application
independent

composition uses
event sync from

Hoare’s CSP

not a new idea

mediator pattern
subject of

Sullivan’s thesis

a reminder: how we didn’t do it

Upvoting

Posting

Karma

upvote
reads

author
from Post
and calls
reward in

Karma

concepts never
call each other’s actions

read or write each other’s state
share mutable composite objects

some more synchronization examples

when
 Requesting.createPost (body)
 Authenticate.authenticate (): user
then Posting.create (user, body)

authenticating users

when Posting.delete (post)
where Commenting: post is target of comment
then Commenting.delete (comment)

when Requesting.deletePost (post)
where Commenting: no comments on post
then Posting.delete (post)

two ways to handle post deletion and comments

when Commenting.create (post, body)
where Posting: author of post is user
then Notifying.notify (user, “Comment “ + body)

notifying post author when someone comments

some influential
concepts & syncs

a concept that
changes our behavior

“destination dispatch elevator”

https://www.wikihow.life/Ride-a-Destination-Dispatch-Elevator / Creative Commons

https://www.wikihow.life/Ride-a-Destination-Dispatch-Elevator

concept DestinationDispatch

actions
 request (on, to: Floor): (assigned: Elevator)
 system arrive (e: Elevator, at: Floor)
 system leave (e: Elevator, at: Floor)

purpose make elevator scheduling more efficient

principle you request a floor to go to, and an
elevator is assigned; you wait for that elevator
and enter it when it arrives; it will then leave and
eventually arrive at the requested floor

the concept

composing with other concepts

automation

use cases
scenarios for user interactions
a popular approach in industry
user stories are similar but shorter

what use case does photo suggest?
1. user flashes id card
2. screen indicates elevator bank to take
3. user enters next elevator there
4. user eventually taken to floor

CardAuthentication Directory DestinationDispatch

get floor for user U
returns F

request floor F
assigns elev E

elevator E arrives

elevator E arrives
at floor F

user U registered
at floor F

card C authenticates
user U

card C issued
for user U

Schindler Miconic 10 (1992)
first commercial implementation

Leo Port, electrical engineer in Sydney
patents destination dispatch (1961)

but lets it expire (1977)

Schindler introduces PORT (2009)
“Personal Occupant Requirement Terminal”

a concept that
created a new world

http://info.cern.ch/hypertext/WWW/TheProject.html

what was novel about the web?

the technology?

NeXT computer
660MB hard disk

Motorola 68030, 25MHz
17” monitor with Display Postscript

built in ethernet connectivity

hypertext?

Apple HyperCard
(Bill Atkinson, 1987)

Memex
(Vannevar Bush, 1945)

SGML
(Charles Goldfarb, 1986)

File Transfer Protocol
(Abhay Bhushan, 1971)

Hypertext Editing System
(Nelson & van Dam, 1967)

a new way to get content

open
connection
to server S

set
directory

get file F1 get file F2
close

connection
to server S

old scenario with annoying constraints

get S/F1 get S/F2

new scenario with constraints removed

concept DistributedNaming [Domain, Name]

state
 a set of Domains each with
 a set of NamedResources
 a set of NamedResources each with
 a Name
 a Resource

actions
 publish (d: Domain, n: Name, r: Resource)
 unpublish (d: Domain, n: Name, r: Resource)
 get (d: Domain, n: Name): (r: Resource)

purpose stable, global naming of resources

principle after publishing a resource at a
domain and a path, a get at that domain and
path will return the published resource

getting to the essence of URLs

why aren’t domain and name strings?
not essential to this concept
(domains especially will be structured)

why separate domain and name?
they play very different roles!
domains allow separate control of naming
domain owner gets to choose name
domain are defined by DNS

publish (essenceofsoftware.com, post/ai-coding, blog post)

an example

Tim Berners Lee outlines
the elements of the web (1989):

HTML, HTTP, URL

URLs defined in RFC 1738 (1994)

Gopher: a hierarchical catalog (1991)

not a solved problem

50% of the URLs in United States Supreme Court opinions are broken
Jonathan Zittrain, Kendra Albert and Lawrence Lessig (2014)

Perma: Scoping and Addressing the Problem of Link and Reference Rot in Legal Citations

a killer concept

from Statistica: 2018-2024 estimated

what was novel about Zoom?

March 31, 2020

shares
meeting id!

were video calls new?

Skype (2009)

QuickCam (1994)
first commercial webcam

Picturephone (1964)

H.264 Video Codec (2003)

the meeting scenario

create
meeting

send
link

start
meeting

join
meeting talksignup

to app

place
call

add
to call talk hangupsignup

to app
signup
to app

concept MeetingLink [Link, User]

state
 a set of Meetings each with
 a Link
 a host User
 an active set of Users

actions
 create (host: User): (link: Link)
 join (user: User, link: Link): (meeting: Meeting)
 leave (user: User, meeting: Meeting)

purpose let users join meeting independently

principle meeting host creates a link and shares
with participants, who can then join the meeting
using the link

Zoom’s meeting link concept

what invariants? host vs. active users?

can meeting be restarted?

what will User be bound to?

three major design questions

tracing zoom’s meeting concept

Google Hangouts
in Google+ (2011)

own product (2013)
Duo replaces (2016)

Google Meet
launched (2017)

absorbs Duo (2022)

FaceTime
Apple (2010)

Skype
initially P2P (2003)
Microsoft (2013)

Microsoft Teams
launched (2017)

Zoom
Eric Yuan (2013)

Join.me
LogMeIn (2010)

meeting scenario

meeting scenario
added to Teams

June 2022?

meeting concept
added to Skype

April 2020

a concept sync
and an FTC settlement

TechCrunch (July 2021)

TechCrunch (Feb 2018)
“autofriending” and

public posts by default

concept PeerToPeerPayment

actions
 transfer (from, to: User,
 amount: Dollar,
 memo: String)
 …

purpose transfer funds between peers

concept SocialFeed

state
 a set of Posts each with
 an author User
 a content String

actions
 post (author: User, content: String)
 …

purpose share short content publicly

when PeerToPeerPayment.transfer (from, to, memo)
then SocialFeed.post (from, memo)

a default synchronization

takeaways

the two aspects of a concept

users’ perspective
a behavioral protocol

software perspective
a “nanoservice” or API

concept elements
name, purpose, principle, state+actions

externalizing connections
syncs on concept actions, no direct refs

concepts change our behavior
how to use an elevator, eg

concepts can eliminate friction
meeting links vs explicit groups, eg

many social problems from syncs
Venmo’s public transaction feed, eg

